首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
马凤英  苏建坡  郭茂田  池泉  陈明  余振芳 《物理学报》2011,60(6):64203-064203
结合微腔面发射器件辐射/发光亮度的空间分布以及相对光谱功率分布给出了器件外量子效率的计算模型. 该模型可以计算工作于不同波段的微腔面发射器件的外量子效率,如红外波段的垂直腔面发射激光器,可见光波段的微腔有机发光二极管和谐振腔发光二极管以及太赫兹波段的平面微腔结构等. 制备了结构为玻璃/DBR /ITO /NPB /Alq ∶C545T/Alq/LiF/Al的微腔有机电致发光器件,测试其不同观察角度下器件的发光亮度以及发光光谱. 当电流密度和发光亮度分别为14 A/m2和100 cd/ 关键词: 外量子效率 平面微腔器件 辐射/发光亮度空间分布  相似文献   

2.
TBPe作蓝光材料的双层白色有机电致发光器件的性能   总被引:7,自引:6,他引:1       下载免费PDF全文
选用一种新型高效的蓝光有机小分子荧光染料TBPe,首次制备了以PVK:TBPe为蓝光发光层和Alq3:rubrene为橙红光发光层的双层白光有机电致发光器件,器件结构为ITO/PVK:TBPe/Alq3:rubrene/Mg:Ag。通过适当调节各有机层的掺杂比例和厚度,得到了发光性能比较理想的白光器件。器件在7V左右启亮,而且随着外加电压的变化,色坐标基本保持不变,在外加驱动电压为16V时,器件的亮度为738cd/m2,外量子效率为0.2%。我们还尝试选用本身可以发绿白光,而且兼具电子传输特性的母体材料Zn(BTZ)2替代Alq3,器件的最大亮度提高到1300cd/m2,色坐标为(0.32,0.36),更加接近白色等能点,器件其他光电性能也得到了显著地提高。  相似文献   

3.
利用一种来源于PPV的发蓝光的齐聚物材料2,5,2',5'-tetra(4'-biphenylenevinyl)-biphenyl(TBVB)制作非掺杂的有机电致蓝光和白光器件。蓝光器件的结构为ITO/NPB/TBVB/Alq3/LiF/Al,其中TBVB用作发光层;白光器件的结构为ITO/NPB/TBVB/rubrene/Alq3/LiF/Al,其中TBVB与超薄层(平均“厚度”0.05~0.20nm)的Rubrene相结合用作发光层,二者分别发蓝光和黄光。在蓝光器件中,当TBVB的厚度为30nm时,器件发出色坐标为(0.20,0.26)的蓝光,其最大亮度和效率分别达到2154cd/m2和1.62cd/A。在白光器件中,可通过调节TBVB和Rubrene的厚度实现对器件发光色度的调节。当TBVB和Rubrene的厚度分别为10,0.15nm时,器件在亮度为4000cd/m2时发光色坐标为(0.33,0.34),非常接近白光等能点,且随着电压的变化始终处于白光区。当电压为16V时该器件达到最高亮度4025cd/m2;当电压为6V时器件有最高的效率3.2cd/A。  相似文献   

4.
通过设计合理的微腔结构,制备了基于绿光染料C545t、黄光染料Rubrene、红光染料DCJTB的3种顶发射有机电致发光器件。研究了不同发光染料对顶发射器件的光谱的影响。研究表明,微腔结构对光谱具有窄化作用。绿光、黄光器件的发光峰波长并未随视角增大而明显变化,体现出良好的光谱角度性,而红光器件却出现了明显的光谱蓝移现象。绿光器件的最大功率效率为8.7 lm/W,当电流密度为45 m A/cm2时,亮度能达到7 205 cd/m2;黄光器件的电流效率最大值为11.5 cd/A,当电流密度为48 m A/cm2时,亮度可达到3 770 cd/m2;红光器件的电流效率最大能达到3.54 cd/A,当电流密度为50 m A/cm2时,可获得1 358 cd/m2的亮度。采用合适的发光材料以及合适的器件结构,不仅可以提高顶发射器件的色纯度及发光效率,还可以改善器件发光光谱的角度依赖性。  相似文献   

5.
利用Ag/tris-(8-hydroxyquinoline) aluminum(Alq3)/Ag/Alq3/Ag这一金属/有机半导体多层结构作为阳极,实现了超低效率滚降的顶发射白光器件。在该器件中,我们在蓝光和橙光发光单元之间引入一个薄的4,4′-bis(9-carbazolyl)-2,2′-biphenyl(CBP)层,从而减少橙光发光层与蓝光发光层的Dexter能量传递,用以改善白光器件发光光谱及效率。通过优化微腔设计,实现了对橙光磷光材料发射的调控。最终,我们获得了在60 000 cd/m2亮度下效率滚降仅为17%的顶发射白光器件。在效率方面,虽然顶发射白光器件与底发射白光器件不相上下,但由于微腔效应的存在,顶发射白光器件的效率滚降却远低于底发射白光器件的效率滚降。  相似文献   

6.
铥、铽及铕离子掺杂的BaAl2O4膜的阴极射线发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用喷雾热解法合成了Tm、Tb及Eu离子掺杂的铝酸钡(BaAl2O4)发光膜,研究了合成条件对其结构和发光特性的影响.在退火温度达到700℃时,生成了BaAl2O4膜.Tm3+和Tb3+掺杂的BaAl2O4膜分别发蓝光和绿光,而Eu3+掺杂的BaAl2O4膜的发光既有Eu2+的特征发射——宽的蓝光发射带,也有Eu3+的特征发射——窄的红光发射峰.BaAl2O4:Tm3+的发射主峰位于462nm,在电压为5kV和电流密度为57μA/cm2的条件下,其阴极射线发光(CL)亮度可达25cd/m2,效率可达0.11lm/W.BaAl2O4:Tb3+的发射主峰位于549nm,在相同的条件下,其阴极射线发光亮度可达120cd/m2,效率可达0.55lm/W.BaAl2O4:Eu3+的发射主峰位于616nm,其阴极射线发光亮度为50cd/m2,效率为0.23lm/W.BaAl2O4:Eu2+发蓝光,峰值位于452nm,其阴极射线发光亮度为640cd/m2,效率为2.93lm/W.  相似文献   

7.
利用激基复合物发光的有机白光电致发光器件   总被引:14,自引:7,他引:7       下载免费PDF全文
冯晶  刘宇  王悦  刘式墉 《发光学报》2002,23(1):25-28
以NPB为空穴传输材料,(dppy)BF为发光层,Alq为电子传输层和色度调节层,制备了有机白光电致发光器件.该器件的白光发射是来自于(dppy)BF与NPB的固界表面形成的激基复合物发光,以及NPB与(dppy)BF发射的蓝光.该白光器件的色度稳定,在电压10~25V的变化范围内,色坐标变化由(0.29,0.33)到(0.31,0.35).器件在4V开启,12V电压下亮度和效率分别为200cd/m2和0.45lm/W.  相似文献   

8.
基于铱配合物材料的高效高稳定性有机发光二极管   总被引:1,自引:0,他引:1       下载免费PDF全文
使用基于重金属Ir的新磷光材料(tpbi)2Ir(acac),制备了多层结构有机发光二极管器件: ITO/CuPc (40 nm)/α-NPD (45 nm)/CBP: (tpbi)2Ir(acac) (3%, 30nm)/BCP(20 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (100 nm).测试了材料的寿命、光谱吸收性质和器件的I-V-L特性.器件在低电压下电流符合热发射注入模型,高电压下I-V呈线形关系.不同偏压下器件发光光谱稳定,多峰拟合结果表明器件光谱由α-NPD发光峰(450 nm),(tpbi)2Ir(acac)主发光峰(518 nm)和肩峰(543 nm)构成.驱动电压为6 V时,器件效率达到最大12.1 lm/W,此时亮度为136 cd/m2,器件亮度最大为13500 cd/m2,此时效率为0.584 lm/W. 关键词: 有机发光二极管 磷光 效率 I-V-L特性')" href="#">I-V-L特性 光谱  相似文献   

9.
采用双层银膜夹入有机物薄膜形成的复合阳极结构,结合具有高透射率的银锗银复合阴极制备了单向发射的半透明红光有机电致发光器件。由于共振隧穿效应使得复合电极对不同波段可见光具有选择性透过的特点,制备的器件表现出单向发射特征。在相同偏压下,器件在非发射方向的亮度始终在发射方向的3%以下。器件在9.5 V电压下达到最大亮度,在发射方向和非发射方向上的亮度分别为15 550 cd/m2和387cd/m2。在7.5 V电压下,器件达到其最高电流效率7.01 cd/A。在该偏压下,其发射与非发射方向亮度分别为4 968 cd/m2和151.7 cd/m2。器件光谱的稳定性很好,随着电压的增加,没有发生明显的变化。此外,随着视角的变化,器件的光谱也无明显的角度特性。当视角从0°增加到60°时,其色坐标仅改变(-0.002,0.001),这是由于银锗银复合阴极具有较高的透射率和低的反射率。  相似文献   

10.
朱键卓  李文连 《发光学报》2012,33(3):299-303
采用复合母体技术制备了一种高效率高显色指数白光有机发光二极管。驱动电压在8 V到12 V变化时,器件的CIE-1931色坐标由(0.343 2, 0.339 7)变化到(0.324 3, 0.321 8),相关色温由5 035 K变化到5 915 K,其显色指数均保持在90以上。器件在14 V时达到最大亮度,为27 853 cd/m2,在7.5 V时达到最大效率为9.58 cd/A。实验中通过调节绿色和红色发光层的厚度来调节器件的发光光谱,通过敏化绿色和红色发光成分以实现电致发光效率的提高,器件的最大效率比没有采用敏化机制的参比器件提高了73.6%。  相似文献   

11.
Zn(BTZ)2白色有机电致发光材料的合成及其器件制备   总被引:10,自引:1,他引:9       下载免费PDF全文
以PCl3为脱水剂,将邻氨基硫酚与水杨酸脱水环化合成出2-(2-羟基苯基)苯并噻唑,并进一步将所得产物与乙酸锌反应合成出2-(2-羟基苯基)苯并噻唑螯合锌(Zn(BTZ)2)材料。以该配合物作为发光层制备出结构为ITO/PVK:TPD/Zn(BTZ)2/Al近白色电致发光器件,其色坐标位于白场之内(x=0.242,y=0.359),在驱动电压为16V时,亮度达3200cdm2,对应的量子效率为0.32%。进一步在Zn(BTZ)2中掺入橙红色染料Rubrene,制成ITO/PVK:TPD/Zn(BTZ)2:Rubrene/Al结构器件,实现了纯白色发光(色坐标值:x=0.324,y=0.343),非常接近于白色等能点,且量子效率达0.47%。最后对上述器件的发光和电学性能进行了深入的研究和探讨。  相似文献   

12.
以9,9'-(1,3-苯基)二-9H-咔唑(m CP)和1,4-二(三苯甲硅烷基)苯(UGH2)为母体,将常用的蓝光染料二(3,5-二氟-2-(2-吡啶)苯基-(2-吡啶甲酸根))合铱(Ⅲ)(FIrpic)掺入这两种母体材料中,制得具有双发光层结构的蓝色磷光有机电致发光器件,并对整个物理机制进行了阐述。该器件较基于m CP或UGH2为母体的单发光层器件有着更高的器件效率。器件的最大电流效率、功率效率、外量子效率分别为21.13 cd/A、14.97 lm/W、10.56%。器件亮度从100 cd/m2到3 000 cd/m2时,效率滚降为34.2%。  相似文献   

13.
使用PCDTBT作为发光层材料,制备了发光波长为705 nm的红色有机电致发光器件,其结构为ITO/PEDOT:PSS/PCDTBT/BCP/LiF/Al.器件启亮电压为2 V,在9 V时器件达到最高亮度,为29000 cd/m2,最大电流效率为3.5 cd/A.还研究了不同退火温度对器件发光性能的影响.实验结果表明,退火温度为50?C时器件的性能最佳,其原因是此时既有利于溶剂挥发,又保持了分子结构的稳定性,而高温退火降低了PCDTBT的π-π堆积的有序性,从而使得器件性能下降.  相似文献   

14.
以1,3,5-tri(9H-ctarbazol-9-yl)benzene(TCzP)为主体材料,制备了FIrpic掺杂的高效有机电致蓝光双发光层器件,最大亮度为11957 cd/m2;最大电流效率为18.8 cd/A;色坐标为(0.17,0.37);光谱峰值位于472nm,在496 nm处有一肩峰;即使在1 000cd...  相似文献   

15.
以铱配合物红色磷光体Ir(piq)2(acac)为掺杂剂,制备了基于BAlq材料的红色电致磷光器件,其结构为ITO/NPB(30nm)/Ir(piq)2(acac):BAlq(25nm)/BCP(13nm)/Alq3(35nm)/LiF(1nm)/Al(1000nm),当掺杂浓度为8%的时候,器件发光的色坐标为(x=0.67,y=0.32),基本满足了全色显示对红色发光的要求。在电压为16V时,器件达到最高亮度9380cd/m2。在电流密度为5.45mA/cm2时,外量子效率达到最大5.7%。由于磷光体Ir(piq)2(acac)的磷光寿命较短,所以器件在高电流密度下,仍然保持较高的外量子效率。电流密度为100mA/cm2时,外量子效率仍然维持在4.7%。进一步研究表明在器件中短程的Dexter能量传递以及红光染料对空穴的直接捕获两种机制同时存在。  相似文献   

16.
采用有机小分子TBPe(2,5,8,11-tetratertbutylperylene)以不同比例掺入MEH-PPV(poly )作为发光层,研究了TBPe不同掺杂比例对器件性能的影响,进而对发光强度进行优化。对于所制备的ITO/PEDOT:PSS/MEH-PPV/TBPe/Al有机电致发光器件,TBPe的最优蒸镀厚度为0.5 nm,其发光强度相对于标准器件提高了325%。ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Liq/Al有机电致发光器件的最优掺杂比例为MEH-PPV:TBPe=100:30(质量比),其发光亮度相比于未掺杂器件提高了44%。在上述器件的基础上增加Alq3层提高电子注入,分别制作了Liq和LiF作为修饰层的ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Alq3/Liq/Al和ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Alq3/LiF/Al多层器件,发光亮度分别达到4 162 cd/m2和4 701 cd/m2。所有器件的电致发光波长均为580 nm,为MEH-PPV的发光,TBPe的掺杂对MEH-PPV的发光起到了增强作用。  相似文献   

17.
DPVBi空穴阻挡层对OLED性能的优化   总被引:2,自引:1,他引:1       下载免费PDF全文
廖亚琴  甘至宏  刘星元 《发光学报》2011,32(10):1041-1045
研究了宽带隙有机小分子材料DPVBi作为空穴阻挡层对OLED器件效率和亮度的优化作用.DPVBi的引入有效地改善了以PEDOT:PSS做空穴注入层的OLED器件的空穴过剩问题.实验结果表明:通过优化DPVBi的厚度,插入30 nm厚的DPVBi空穴阻拦层可以有效地平衡OLED器件的电子和空穴浓度,降低器件的工作电压,优...  相似文献   

18.
The performance of organic light emitting device (OLED) structures, based on identically fabricated Alq3/TPD active regions, with various anode and cathode electrode structures are compared, and performance differences related to the different anode structure. The best performance was achieved with a conductive polymer, 3,4-polyethylenedioxythiopene-polystyrenesultonate (PEDOT), used as an anode layer, yielding a brightness of 1720 cd/m2 at 25 V, a turn-on voltage of 3 V, and electroluminescence (EL) efficiency and external quantum efficiency of 8.2 cd/A and 2%, respectively, at a brightness of 100 cd/m2 and 5 V. Compared to a baseline device (TPD/Alq3/Al), PEDOT anodes substantially reduce the turn-on voltage and made current injection almost linear after turn-on, whiles devices incorporating a LiF and CuPc layers significantly improved device efficiency while slightly improving turn-on voltage and maintaining superlinear I-V injection. This is attributed to the reduced barrier at the organic-organic interface in PEDOT, the ‘ladder’ effect of stepping the band offset over several interfaces, and the favorable PEDOT film morphology. The benefit of the PEDOT anode is clearly seen in the improvement in device brightness and the high external quantum efficiency obtained.  相似文献   

19.
俞浩健  姚方男  代旭东  曹进  田哲圭 《物理学报》2019,68(1):17202-017202
本文采用非掺杂超薄发光层及双极性混合间隔层结构,获得了高效、光谱稳定的白光有机发光器件.基于单载流子器件及单色蓝光有机发光器件的研究,确定了双极性混合间隔层的最佳比例;通过瞬态光致发光寿命研究,验证了不同发光材料之间的能量传递过程;得到的三波段和四波段白光有机发光器件的最高效率分别为52 cd/A (53.5 lm/W)和13.8 cd/A (13.6 lm/W),最高外量子效率分别为17.1%和11.2%.由于发光层不同颜色之间依次的能量传递结构,三波段白光有机发光器件的亮度从465到15950 cd/m~2时,色度坐标的变化?CIE仅为(0.005, 0.001);四波段白光有机发光器件的亮度从5077到14390 cd/m~2时,色度坐标的变化?CIE为(0.023, 0.012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号