首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用微波辐射法合成了一系列的Ca_(1-x)MoO_4∶x Dy~(~(3+))(0x≤0.12)和Ca_(0.98)(Mo O_4)_(1-1.5y)(PO_4)y∶0.02Dy~(3+)(0≤y≤0.10)黄绿色荧光粉,分别用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)和荧光分光光度计对荧光粉的物相结构、微观形貌、发光特性进行了分析和表征。结果表明:所制得的CaMoO_4∶Dy~(3+)晶体结构与Ca Mo O4相似,为四方晶系、白钨矿结构。样品颗粒呈立方形,边长约为5μm,且是由尺寸约为120~540 nm的类球形小颗粒组成。样品的最大激发峰位于300 nm处。发射光谱由一系列尖峰组成,最强发射峰位于572 nm处,对应于Dy~(3+)的4F9/2→6H13/2跃迁,发光强度随Dy~(3+)浓度的增加先增大后减小,当Dy~(3+)摩尔分数为0.02时发光强度最大,而后随Dy~(3+)浓度的增加,发生了浓度猝灭效应。由Dexter浓度猝灭理论知,Dy~(3+)浓度猝灭主要为电偶极-电偶极相互作用和Dy~(3+)离子间交叉弛豫造成的。在254 nm波长激发下,Ca Mo O4∶Dy~(3+)的色坐标集中在黄绿光区域。此外,PO3-4的掺杂有效提高了CaMoO_4∶Dy~(3+)体系的发光亮度,PO_4~(3-)的最佳掺杂量为y=0.04,此时样品的发光强度比未掺杂样品提高了约19%。  相似文献   

2.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

3.
近年来,Er^(3+)离子掺杂的无机发光材料被广泛应用于温度传感材料的研究。本文采用溶胶⁃凝胶法制备了Er^(3+)掺杂的KBaGd(MoO_(4))_(3)荧光粉,利用常温激发和发射光谱、荧光衰减曲线以及变温发射光谱对其光谱性能以及温度传感特性进行了分析。荧光光谱表明,KBaGd(MoO_(4))_(3)∶Er^(3+)在380 nm处有着较强的吸收峰,源自于Er^(3+)离子的4I_(15/2)→4G_(11/2)吸收跃迁。在近紫外光激发下,KBaGd(MoO_(4))_(3)∶Er^(3+)荧光粉在520~570 nm之间具有两个明亮的绿色发射。由于电偶极间相互作用,当Er^(3+)离子掺杂浓度超过8%时,样品发光开始出现浓度猝灭。基于荧光强度比(FIR)模型计算得到KBaGd(MoO_(4))_(3)∶Er^(3+)的相对灵敏度优于已报道的大部分同类温度传感材料,因此在光温传感领域有着更好的应用潜力。最后,对利用KBaGd(MoO_(4))_(3)∶Er^(3+)设计的LED进行了光电参数测试,并对其在照明领域的应用进行了客观评价。  相似文献   

4.
采用水热法成功制备了Yb~(3+),Ho~(3+),Tm~(3+)三掺的多晶KLa(Mo O4)2荧光粉。在980 nm激光激发下,KLa(MoO_4)_2∶Yb~(3+),Ho~(3+),Tm~(3+)发出裸眼可见的明亮白光,这其中包括Tm~(3+)离子发出的蓝光(~475 nm)、Ho~(3+)离子发出的绿光(~540 nm)和红光(~651 nm)。根据色度坐标系计算得出的坐标点可以看出,随着Ho~(3+)/Tm~(3+)掺杂浓度之比的增加,KLa(Mo O_4)_2∶Yb~(3+),Ho~(3+),Tm~(3+)所发出的白光呈现从冷白光到暖白光的变化。最后详细讨论了KLa(Mo O_4)_2∶Yb~(3+),Ho~(3+),Tm~(3+)荧光粉可能的发光机制。  相似文献   

5.
采用传统的固相法成功合成了一系列α-Ba_3Y(BO_3)_3∶Dy~(3+)荧光粉,使用X射线衍射(XRD)、扫描电镜(SEM)、荧光光谱(FL)和寿命衰减曲线等对样品进行表征。结果表明:在近紫外/蓝光激发下,样品的发射光谱主要包含黄(577 nm)、蓝(488 nm)两个发射峰组成,分别对应电子跃迁~4F_(9/2)→~6H_(1 3/2)和~4F_(9/2)→~6H_(1 5/2)。最佳合成温度为1 100℃,该条件下合成的样品具有纯相、最大结晶度和最大发光强度。研究了荧光粉的浓度猝灭效应,猝灭机理主要是dipole-dipole interaction,同时exchange interaction无法忽略,临界摩尔分数为0.07。样品的寿命衰减曲线为二次指数型,这与Ba_3Y(BO_3)_3特有的晶格结构有直接关系。α-Ba_3Y(BO_3)_3∶Dy~(3+)荧光粉有应用于荧光转换型白光LED照明的潜力。  相似文献   

6.
采用溶胶凝胶法制备了Y_4Zr_3O_(12)∶Eu~(3+)纳米荧光粉,分别采用XRD、TEM和荧光光谱仪对样品的结构、形貌和发光性能进行了表征,探讨了烧结温度和Eu~(3+)掺杂浓度对荧光粉发光性能的影响。结果表明,样品可以被394 nm和467 nm的激发光有效激发。样品的最佳烧结温度和Eu~(3+)离子的最佳掺杂摩尔分数分别为1 400℃和18%。浓度猝灭主要归因于电偶极-电偶极相互作用。  相似文献   

7.
采用溶胶凝胶法合成稀土离子掺杂Ca Y_(1-x)Al O_4∶xRE~(3+)(RE=Dy,Ho,Sm,Tm)荧光粉。采用X射线粉末衍射仪(XRD)、高分辨率透射电镜(TEM)和荧光分光光度计(PL)分别对荧光粉的物相结构、形貌以及荧光性能进行表征。研究结果表明,所合成样品为四方晶系结构的纳米级材料,在紫外光激发下,掺杂离子均表现出特征的f-f电子跃迁发射,当Dy~(3+)、Ho~(3+)、Sm~(3+)和Tm~(3+)的掺杂摩尔分数分别为0.03,0.015,0.015,0.02时,样品发光强度最大,分别发射出白光、绿光、橙光和蓝光。  相似文献   

8.
采用高温固相法合成了La_(2-x)MgTiO_6∶xDy~(3+)和La_(2-x-y)MgTiO_6∶xDy~(3+),yEu~(3+)系列荧光粉,通过X射线衍射对其相结构进行了表征,优化了荧光粉的组成,研究了Dy~(3+)和Eu~(3+)浓度对发光强度的影响,测试了荧光粉的荧光光谱和寿命,研究了Dy~(3+)和Eu~(3+)之间的能量传递机理和能量传递效率。结果表明:所有合成的掺杂荧光粉均为单相物质;La_(2-x)MgTiO_6∶xDy~(3+)最佳掺杂浓度为x=0.05;在350 nm近紫外光激发下,La_(2-x-y)MgTiO_6∶xDy~(3+),yEu~(3+)显示出Dy~(3+)的特征黄、蓝光发射和Eu~(3+)的特征红光发射;Dy~(3+)的荧光寿命呈双指数衰减,随着Eu~(3+)浓度的增大,Dy~(3+)的荧光寿命逐渐减小,证明了Dy~(3+)和Eu~(3+)离子之间存在着能量传递;能量传递效率随着Eu~(3+)掺杂浓度的增加而增加,La_(1.83)MgTiO_6∶0.05Dy~(3+),0.12Eu~(3+)荧光粉的能量传递效率为53.9%;改变调节Eu~(3+)的掺杂浓度可以得到从冷白色到暖白色的荧光粉,La_(1.83)MgTiO_6∶0.05Dy~(3+),0.12Eu~(3+)的色坐标为(0.337 3,0.354 4)。  相似文献   

9.
采用溶胶凝胶法合成了CaY_(1-x-y)AlO_4∶xCe~(3+),yTb~(3+)荧光粉,探讨了稀土离子Ce~(3+)、Tb~(3+)单掺及共掺对样品发光性能的影响。研究结果表明,合成的样品为四方晶系的纯相。在368nm光激发下,CaY_(1-x)AlO_4∶xCe~(3+)发射蓝光,发射峰位于445nm附近;在246nm光激发下,CaY_(1-y)AlO_4∶yTb~(3+)发射绿光,发射峰位于418,440,491,548,589,625nm附近。在Ce~(3+)/Tb~(3+)共掺荧光粉中,Ce~(3+)的能量可传递给Tb~(3+),使Tb~(3+)的发光增强;当用368nm或378nm光激发共掺荧光粉时,Tb~(3+)呈现强烈的绿光发射。调整Ce~(3+)与Tb~(3+)的掺杂浓度可以调整对应的蓝光与绿光的发射强度。  相似文献   

10.
采用传统固相法在1100℃合成了SrGe_(4-x)O 9∶x Mn^(4+)(SGOM)系列荧光粉,通过Ba^(2+)取代Sr 2+调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明,Mn^(4+)和Ba^(2+)均成功地掺杂进入基质SrGe_(4)O_(9)晶格,没有其他物相产生。在275 nm紫外光激发下,SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn 4+离子^(2)E g→^(4)A _(2g)能级跃迁的窄带发射,优化的Mn^(4+)浓度为0.015。利用Ba^(2+)离子对SrGe _(3.985) O _(9)∶0.015Mn^(4+)荧光粉的发光性质进行调控,发现随着Ba^(2+)浓度增大,发射光谱的强度先上升后下降,最佳Ba^(2+)浓度为0.4。Ba^(2+)离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe _(3.985) O _(9)∶0.015Mn^(4+)荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。  相似文献   

11.
采用溶胶-凝胶法合成了系列Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)红色荧光粉。通过X射线粉末衍射、荧光光谱等对合成的荧光粉样品进行表征,并系统地研究了烧结温度、Eu~(3+)掺杂浓度对样品发光强度的影响。结果表明:该荧光粉能被近紫外光(393 nm)有效激发;当烧结温度为800℃、Eu~(3+)的掺杂量为5.0%(摩尔分数)时,样品发射出的荧光强度最强。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)样品的色坐标(0.684,0.316)与红色标准值(x=0.670,y=0.330)非常接近。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)是一种很好的新红色荧光粉。  相似文献   

12.
Eu~(3+)掺杂的Na_2YMg_2(VO_4)_3荧光粉制备和发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
李中元  李勇  夏爱林 《发光学报》2017,38(3):296-302
采用溶胶-凝胶法制备了Na2Y1-xMg2(VO4)3∶x Eu~(3+)(x=0.15~0.75)系列自激活荧光粉。用XRD、SEM、光致发光光谱和荧光衰减曲线分别对其结构、形貌和发光性能进行表征。XRD结果显示样品为纯石榴石结构,其中Eu~(3+)取代Y~(3+);SEM照片显示样品为粒径大小在0.3~1μm范围内不规则的光滑球状颗粒;光谱分析表明,Na2YMg2(VO4)3作为自激活发光基质可以被200~400 nm紫外光有效激发,发出源于VO_4~(3-)电荷迁移跃迁的波长范围为400~700 nm的宽谱带绿光。掺杂Eu~(3+)后,在340 nm紫外光激发下同时出现了VO_4~(3-)的电荷迁移带和Eu~(3+)的特征光谱。不同浓度Eu~(3+)掺杂的光谱和荧光衰减曲线表明,存在VO_4~(3-)和Eu~(3+)之间的能量传递。  相似文献   

13.
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉。通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH_4Cl,BaF_2)对Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉结构、发光性能和热稳定的影响。XRD图谱对比结果表明,制备的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉XRD图与理论计算得到的图谱几乎一致。Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉在360~450nm有很强的激发强度,并且在440nm激发下发射峰值波长为530nm的发射光。随着Eu~(2+)离子浓度的增加,发射光谱出现了红移,且在Eu~(2+)离子浓度约为6%时发生了浓度猝灭现象。当添加NH_4Cl和BaF_2作为助溶剂,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度有一定提高。与未添加助溶剂的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度相比,添加NH_4Cl助溶剂后发光强度增加了70%。此外,当温度升高至150℃时,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉具有良好的热稳定性。这些发光性能均表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉。  相似文献   

14.
采用溶胶凝胶法合成CaYAl_(1-x)O_4∶xMn~(4+)红色荧光粉,用差热热重分析仪(DSC-TGA)、X射线粉末衍射仪(XRD)、透射电镜(TEM)以及荧光分光光度计对荧光粉进行结构和性能的表征,研究合成温度、反应时间及Mn~(4+)掺杂浓度对CaYAl_(1-x)O_4∶xMn~(4+)发光性能的影响。研究结果表明,在335 nm光激发下,荧光粉发射660~780 nm范围的红光,归属于Mn~(4+)的~2E_g→~4A_(2g)能级跃迁。在712 nm光监测下,样品呈现两组激发宽峰,分别归属于Mn~(4+)离子的~4A_(2g)→~4T_(1g)(335 nm)和~4A_(2g)→~4T_(2g)(475 nm)能级跃迁。当煅烧温度为1 200℃、反应时间为6 h和Mn~(4+)的掺杂摩尔分数为0.5%时,CaYAl_(1-x)O_4∶xMn~(4+)的发光强度最大。  相似文献   

15.
采用高温固相法制备了LiGd(W_yMo_(1-y))_2O_(8-x/2)F_x∶0.4Eu~(3+)(x=0~1,y=0~1)系列白光LED用红色荧光粉。通过扫描电子显微镜、X射线衍射仪、红外光谱仪、荧光光谱仪对荧光粉的形貌、结构、光学性能进行了表征。结果表明,Eu~(3+)、F-和WO_4~(2-)的掺杂没有改变LiGd(MoO_4)_2的四方晶系白钨矿结构;F~-和WO_4~(2-)最佳掺杂量分别为x=0.6,y=0.4。在396 nm激发下,LiGd(W_(0.4)Mo_(0.6))_2O_(7.7)F_(0.6)∶0.4Eu~(3+)的发光强度比未掺杂样品提高了60%,量子效率可达66.23%。当温度升高至100℃时,样品的发射强度降为25℃时的76.6%。在460 nm激发下,样品的最强窄带发射峰位于617 nm处,归属于~5D_0→~7F_2跃迁,色坐标为(0.649 9,0.346 3)。5D0能级的荧光寿命曲线遵循单指数规律衰减,随着F-掺杂浓度的增加,5D0能级的荧光寿命不断增加,归因于低声子能量的F-掺入有效减小了能量的无辐射跃迁概率。所制备的LiGd(W_(0.4)Mo_(0.6))_2O_(7.7)F_(0.6)∶0.4Eu~(3+)荧光粉有望应用于白光LED。  相似文献   

16.
采用传统固相法在1 100℃合成了SrGe_(4-x)O_9∶xMn~(4+)(SGOM)系列荧光粉,通过Ba~(2+)取代Sr~(2+)调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明,Mn~(4+)和Ba~(2+)均成功地掺杂进入基质SrGe_4O_9晶格,没有其他物相产生。在275 nm紫外光激发下,SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn~(4+)离子~2E_g→~4A_(2g)能级跃迁的窄带发射,优化的Mn~(4+)浓度为0.015。利用Ba~(2+)离子对SrGe_(3.985)O_9∶0.015Mn~(4+)荧光粉的发光性质进行调控,发现随着Ba~(2+)浓度增大,发射光谱的强度先上升后下降,最佳Ba~(2+)浓度为0.4。Ba~(2+)离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe_(3.985)O_9∶0.015Mn~(4+)荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。  相似文献   

17.
在还原气氛下采用高温固相法合成了白光发光二极管(LED)用荧光粉Ca_(0.98-y)Si_2N_2O_2:0.02Eu~(2+),yM~(3+),其中M为Gd(1%~12%)或者Dy(0.25%~6%)。利用X射线衍射仪分析其物相结构,发现稀土离子的掺入并没有改变其主晶相,仍为单斜结构。利用荧光分光光度计测试并分析激发光谱与发射光谱,样品在380 nm处有很宽的激发谱带,在位于550 nm处存在很宽的发射谱带,此发射谱归因于Eu~(2+)离子5d-4f的电子跃迁。Dy~(3+)与Gd~(3+)离子对Eu~(2+)发光具有明显的敏化作用:Dy~(3+)的摩尔分数为1%时,发光强度增加39%,达到最大值;Gd~(3+)则在摩尔分数为6%时,发光强度最强,增强了43%。并根据掺杂离子的能级特点对其发光微观机制进行了初步探讨。  相似文献   

18.
采用两步烧结法低温制备了Sr_2MgAl_(22)O_(36)∶Mn~(4+)-(SiO_2-Al_2O_3-ZnO-BaO)荧光玻璃(SMA∶Mn~(4+)-PiG)。通过X射线衍射、扫描电镜、光致激发和发射光谱、荧光衰减曲线等手段对其物相、成分与发光性能进行了研究。实验结果表明,形成PiG后,SMA∶Mn~(4+)荧光粉的物相和元素组成保持不变。不同SAM∶Mn~(4+)含量的PiG样品在328 nm光激发下,在661 nm处均显示强的发射带,归属于荧光粉中Mn~(4+)的~2E→~4A_2跃迁,发光光谱与植物光敏色素的红区吸收光谱匹配良好。随着荧光粉含量的增加,SAM∶Mn~(4+)-PiG的发光强度逐渐增大。15%SMA∶Mn~(4+)-PiG样品的内、外量子效率分别为26%和20%,低于SMA∶Mn~(4+)荧光粉的59%和40%。相比于SMA∶Mn~(4+)荧光粉,荧光玻璃的吸收效率和热稳定性略有提高。通过与高功率紫外芯片封装,SMA∶Mn~(4+)-PiG红光LED器件在100 mA驱动电流下展现了最高的电致发光强度。  相似文献   

19.
通过高温固相法制备出一系列新型上转换材料Sc_2(WO_4)_3∶Er~(3+)/Yb~(3+)。在980 nm激光激发下,Sc_2(WO_4)_3∶Er~(3+)/Yb~(3+)样品发出肉眼可见的强绿光。利用荧光光度计测得样品的发光光谱,在500~600 nm之间有强绿光发射,分别归因于Er~(3+)的~2H_(11/2)→~4I_(15/2)和~4S_(3/2)→~4I_(15/2)跃迁发射。在650~700 nm位置处,有对应于Er~(3+)离子~4F_(9/2)→~4I_(15/2)跃迁的较弱的红光发射。随着掺杂浓度的变化,样品的红绿分支比发生变化。当样品掺杂Er~(3+)浓度为0.05%、Yb~(3+)浓度等于0.1%时,样品发射的绿光强度是红光强度的27倍。另外,利用荧光强度比方法研究了Er~(3+)的两个热耦合能级在303~573 K范围内的发光温度特性。393 K时,样品的灵敏度达到最大为0.006 8 K~(-1)。对比于其他荧光粉材料,Sc_2(WO_4)_3∶Er~(3+)/Yb~(3+)的灵敏度处于较高水平,在实际测温中具有更好的应用前景。  相似文献   

20.
采用水热法合成了不同Tb~(3+)浓度掺杂的单分散球形PaWO_4绿色荧光粉。通过粉末X射线衍射(XRD)和扫描电子显微镜(SEM),能量色散光谱仪(EDS)来表征荧光粉的晶体结构、颗粒大小、形貌及成分;激发光谱和发射光谱以及荧光衰减曲线来表征荧光粉的荧光性能。XRD分析确认不同Tb~(3+)浓度掺杂的BaWO_4具有白钨矿结构;SEM图像显示不同Tb~(3+)浓度掺杂BaWO_4为单分散的球形荧光粉以及颗粒大小为2~4μm。研究Tb~(3+)离子掺杂浓度对发光强度的影响,结果表明,荧光粉中Tb~(3+)离子的最佳掺杂原子数分数为12%。发射光谱表明在254 nm的UV光激发下12%BaWO_4:Tb荧光粉样品与商用绿色荧光粉LaPO_4:Ce,Tb发光强度相当。由于Tb掺杂的BaWO_4绿色荧光粉具有优良的发光性能和容易制备的特点,有望成为新一代的绿色荧光粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号