首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HL-2A�����������ϵͳģ��   总被引:1,自引:0,他引:1  
The physical model of the neutron camera Monte-Carlo partical transport (MCNP) for HL-2A was established by using Monte-Carlo simulation code. The shielding of D-D fusion neutrons and gamma rays was simulated. The shielding effects were compared for four common shielding materials, including mixture of paraffin lithium carbonate, polyethylene, lead, 316L stainless steel. Calculation results show that mixture of paraffin lithium carbonate and lead are the best shielding materials for neutron camera, among them the mixture of paraffin lithium carbonate is used for slowing-down and absorpting neutrons, while lead is used for blocking neutrons and gamma rays. In addition, both the required thickness of shielding material for neutron and gamma ray and the neutron scattering rate of collimator tube have been obtained by using MCNP simulation.  相似文献   

2.
利用蒙特卡罗模拟程序,建立了HL-2A中子相机蒙特卡罗粒子输运(MCNP)物理模型,对D-D聚变中子和γ射线的屏蔽进行了模拟计算。对石蜡碳酸锂混合物、聚乙烯、铅和316L不锈钢4种常用中子慢化吸,收剂组成的屏蔽层材料的屏蔽效果进行了对比。计算结果表明,石蜡碳酸锂混合物和铅组合是中子相机的最佳屏蔽层材料,其中石蜡碳酸锂混合物用于慢化吸收中子,铅用于屏蔽中子和γ射线。此外,利用MCNP模拟计算得到了屏蔽中子和γ射线所需的屏蔽厚度,以及准直管的中子散射率。  相似文献   

3.
沈飞  梁泰然  殷雯  于全芝  左太森  姚泽恩  朱涛  梁天骄 《物理学报》2014,63(15):152801-152801
本文介绍了利用蒙特卡罗粒子输运程序MCNPX2.5.0进行中国散裂中子源多功能反射谱仪屏蔽设计的屏蔽需求、辐射源项、计算方法和设计结果等内容.在计算中考虑慢化器泄漏源项、中子导管损失源项等不同辐射源项,使用分步计算和源项角度偏移、源项能量偏移、几何分裂等多种减方差方法,在保证计算结果精度的同时提高计算速度.在谱仪束线传输段、第二中子开关、散射室等的屏蔽计算中,通过比较了不同条件下的所需屏蔽确定最终屏蔽设计,确保谱仪屏蔽外人员可到达区域的剂量低于安全限值2.5μSv/h.  相似文献   

4.
In this paper, the distribution of radiation field in the CSNS spectrometer hall at Dongguan, China, was simulated by the FLUKA program. The results show that the radiation field of the high energy proton accelerator is dominated by neutron radiation, with a broad range of neutron energies, spanning about eleven orders of magnitude.Simulation and calculation of the response functions of four Bonner spheres with a simplified model is done with FLUKA and MCNPX codes respectively, proving the feasibility of the FLUKA program for this application and the correctness of the calculation method. Using the actual model, we simulate and calculate the energy response functions of Bonner sphere detectors with polyethylene layers of different diameters, including detectors with lead layers, using the FLUKA code. Based on the simulation results, we select eleven detectors as the basic structure for an Extended Range Neutron Multisphere Spectrometer(ERNMS).  相似文献   

5.
This paper considers the current China fusion engineering test reactor (CFETR) design, and simplifies it to a one-dimensional model. With the multi-particle transport code FLUKA, the neutron activation character of the tritium breeding blanket, shielding layer, vacuum vessel material and TFC of CFETR has been calculated to verify the radiation safety of the present design. The related results provide data reference for designing the components of CFETR and for further neutron activation analysis and calculation. The calculation results show that under the circumstances of one year operation with 200WM fusion power, the total radioactivity is 1.05×10 19 Bq after shutdown and 1.03×10 17 Bq after cooling for ten years. The primary residual nuclide is55 Fe after decaying for ten years. It shows that there isn’t seriously activation safety issue.  相似文献   

6.
运用FLUKA计算程序对中国聚变工程实验堆(CFETR)进行了一维模拟活化运算,得出了产氚包层、屏蔽层、真空室结构材料、环向场线圈等模块的中子活化特性。计算结果表明,在聚变堆以200MW聚变功率持续稳态运行一年后,刚停堆时堆体的总活度为1.05×10 19 Bq,停堆十年后堆体总活度为1.03×10 17 Bq,此时堆体的主要残留放射性核素为55 Fe。研究结果表明,目前CFETR的设计不存在突出的放射性环境安全问题。  相似文献   

7.
Measurements of the secondary particle energy spectra in the Space Shuttle   总被引:2,自引:0,他引:2  
Measurements of the energy spectra of secondary particles produced by galactic cosmic rays and trapped protons due to the nuclear interactions of these particles with the Shuttle shielding provide a powerful tool for validating radiation transport codes. A code validated in this way can be used to better estimate the dose and dose equivalent to body organs, measurements that cannot be made directly. The principal cause of single event upsets in electronic devices in the region of the South Atlantic Anomaly is secondary particles, and even in the region of galactic cosmic radiation a significant fraction is produced by secondary particles. In this paper, we describe the first direct measurements of the energy spectra of secondary protons, deuterons, tritons, 3He and 4He produced by galactic cosmic rays inside the Space Shuttle using a charged particle spectrometer. A comparison of these spectra with radiation transport code HZETRN showed reasonably good agreement for secondary protons. However, the code seriously underestimated the flux of all other light ions. The code has been modified to include pick-up and knock-on processes. The modified code leads to good agreement for deuterons and 3He but not for other light ions. This revised code leads to about 10% higher dose equivalent than the original code under moderate shielding, if we assume that higher charge ion fluxes are correctly predicted by the model.  相似文献   

8.
混合评价核数据库HENDL1.0/MG/MC研制   总被引:1,自引:0,他引:1  
根据世界几个主要核评价数据库,如ENDF/B 6(美国)、JEF 2.2(欧盟)、JENDL 3.2(日本)、BROND 2.2(俄罗斯)、CENDL 2.1(中国)和FENDL 2(IAEA/NDS),兼顾聚变、裂变以及聚变 裂变次临界混合堆设计研究的多种需要,经过甄别、筛选,最后集成为包含213个核素的基本评价文件,名为HENDL1.0/E的核评价数据库.在此基础上,利用目前流行的群常数加工程序系统NJOY和输运截面制备程序TRANSX制作两套用于中子或/和光子输运计算的输运截面工作库:①参考Vitamin J能群结构制作了175群中子和42群光子、中子 光子耦合多群工作数据库HENDL1.0/MG,可用于离散纵标Sn法程序计算;②连续能群结构、紧凑ENDF(ACE)格式中子截面库HENDL1.0/MC,可用于蒙特卡罗方法输运计算,如MCNP.另外还制作了可用于燃耗(嬗变)计算的燃耗库BURNUP.LIB和响应函数库RESPONSE.LIB两个专用数据库.同时,也对HENDL1.0综合评价核数据库的有效性进行了抽样测试、基准检验和初步确认. A Hybrid Evaluated Nuclear Data Library(HENDL) named as HENDL1.0 has been developed by Fusion Design Study (FDS) team of Institute of Plasma Physics, Academia Sinica (ASIPP) to take into account the requirements in design and research relevant to fusion, fission and fusion-fission sub-critical hybrid reactor. HENDL1.0 contains one basic evaluated sub-library naming HENDL1.0/E and two processed working sub-libraries naming HENDL1.0/MG and HENDL1.0/MC, respectively. Through carefully comparing...  相似文献   

9.
Development of HZE particle transport codes is severely required for the shielding design of spacecrafts. One-dimensional deterministic codes are generally adopted in the shielding calculation because of their reasonable computational time, but three-dimensional Monte Carlo codes are also to be employed especially in the final step of the design with fully optimized geometries. We are therefore developing a general-purpose Monte Carlo code PHITS, which can deal with the transports of all kinds of hadrons and heavy ions with energies up to . For the purpose of examining the applicability of PHITS to the shielding design, neutron and charged particle spectra inside the Space Shuttle were calculated for an imaginary vessel whose shielding distribution is fitted to that of the real shuttle. Absorbed doses and dose equivalents were estimated from the spectra by applying fluence to dose conversion coefficients. The agreements between the calculated spectra or doses and the corresponding experimental data were generally satisfactory, especially for the neutron spectra, which have been barely reproduced by other studies. We therefore concluded that PHITS has a great possibility of playing an important role in the design study of spacecrafts.  相似文献   

10.
基于自主研制的三维中子-光子耦合输运蒙特卡罗通用程序JMCT(J Monte Carlo Transport Code),采用连续点截面,对国际基准屏蔽VENUS-III模型开展精细建模和中子输运临界及屏蔽计算.临界计算得到系统keff、重要区域的通量及能谱.结果表明,JMCT和MCNP程序的重要区域体通量计数吻合较好,偏差均在1%以内.深穿透屏蔽计算采用外源模式,点探测器计数,JMCT计算值与实验测量值偏差在15%以内,满足屏蔽设计对误差的要求.初步验证了JMCT程序临界及屏蔽计算的可用性.  相似文献   

11.
在ADS散裂靶系统的优化设计中,蒙特卡罗方法结合可靠的散裂反应理论模型进行中子学计算具有重要的作用。本工作利用Geant4程序中的INCLXX模型、BIC模型以及BERT模型和FLUKA程序分别模拟了597 MeV和1 500 MeV质子轰击薄铅靶不同出射角度的中子双微分截面,500,1 500 MeV质子轰击厚铅靶不同出射角度的中子双微分产额,以及400,600,800,1 000和1 200 MeV质子轰击厚钨靶在反角方向(175 °)的中子双微分产额,并与实验数据进行比较。研究表明,对于薄铅靶,Geant4程序的INCLXX模型和FLUKA程序模拟结果与实验符合得更好。能量在10~40 MeV范围内,BIC模型模拟结果明显高于实验数据,而BERT模型模拟结果略微低于实验数据。对于厚铅靶,在40 MeV左右所有的模拟结果都低于实验数据。对于厚钨靶,Geant4程序的BIC模型和FLUKA程序与实验数据符合得较好,INCLXX模型在能量高于60 MeV时模拟结果低于实验数据,BERT模型与实验数据差异较大。总体来看,Geant4程序的INCLXX模型和FLUKA程序进行ADS散裂靶相关的中子学的计算是合理和可靠的。The reliable Monte Carlo simulation codes coupled with nuclear reaction models play an important role in the neutronic calculation for the design and optimization of the ADS spallation target. In this work, the double differential cross sections at different angles produced from a thin lead target bombarded with 597 and 1 500 MeV protons, the neutron energy spectra at different angles produced from a thick lead target bombarded with 500 and 1 500 MeV protons, and the neutron energy spectra in the backward direction(175°) produced from a thick tungsten target bombarded with 400, 600, 800, 1 000 and 1 200 MeV protons are calculated with the Geant4 code coupled INCLXX, BIC and BERT models and the FLUKA code. The calculations are compared with the available experimental data. The results show that, for the thin lead target, the calculations with the Geant4 coupled INCLXX model and FLUKA code well reproduce the experimental results. In a energy range from 10 to 40 MeV, BIC model obviously overestimates the experimental results, and BERT model slightly underestimates the experimental results. For the thick lead target, all of the calculations underestimate the experimental results around 40MeV. For the thick tungsten target, the Geant4 coupled BIC model and FLUKA code well reproduce the experimental results. INCLXX model underestimates the experimental results above 60 MeV. BERT model bad reproduces the experimental results. Overall, the neutronic calculations with the Geant4 code coupled INCLXX model and FLUKA code for the ADS spallation target is reasonable and reliable.  相似文献   

12.
The secondary neutron fields at the deep tumor therapy terminal at HIRFL(Heavy Ion Research Facility in Lanzhou) were investigated. The distributions of neutron ambient dose equivalent were measured with a FHT762Wendi-II neutron ambient dose equivalent meter as ~(12)C ions with energies of 165, 207, 270, and 350 Me V/u were bombarded on thick tissue-like targets. The thickness of targets used in the experiments was larger than the range of the carbon ions. The neutron spectra and dose equivalent were simulated by using FLUKA code, and the results agree well with the experimental data. The experiment results showed that the neutron dose produced by fragmentation reactions in tissue can be neglected in carbon-ion therapy, even considering their enhanced biological effectiveness.These results are also valuable for radiation protection, especially in the shielding design of high energy heavy ion medical machines.  相似文献   

13.
为了给医用重离子加速器提供一种专用的快速计算屏蔽厚度或对蒙特卡罗模拟结果进行验证的方法.采用FLUKA程序完成了400 MeV/u碳离子打不同靶的屏蔽参数计算.首先研究了打厚靶(铁、水)产生的次级辐射场的角度分布及主要成分;接着给出了不同角度范围下周围剂量当量在屏蔽体中的衰减曲线,通过拟合数据进一步得到不同角度范围下的...  相似文献   

14.
苏耿华  韩嵩 《强激光与粒子束》2012,24(12):2951-2954
基于知识产权的考虑,通过与蒙特卡罗程序MCNP计算结果比对,研究使用FLUKA程序替代MCNP程序进行反应堆压力容器快中子注量计算的可行性。通过修改和调用子程序对次级粒子堆栈进行操作,解决了关闭裂变中子这一关键问题,FLUKA程序的计算结果与MCNP程序的计算结果相对偏差在5%以内,符合得较好,证明使用FLUKA程序替代MCNP程序用于计算反应堆压力容器快中子注量在技术上是可行的。  相似文献   

15.
为研究新型复合屏蔽材料的最佳厚度与各种成分最佳配比, 用MCNP计算了中子、 γ射线在稀土 高分子与重金属复合材料中的通量。 对中子、 γ射线在屏蔽体中变化规律进行了深入探索, 同传统复合屏蔽材料的屏蔽性能进行了对比。 结果表明, 中子和γ射线通过屏蔽体时, 其强度遵循指数衰减规律。 新型屏蔽材料对中子的屏蔽效果均优于铅硼聚乙烯, 对γ射线的屏蔽效果均劣于W Ni合金, 且并非稀土含量越高, 材料对中子辐射屏蔽能力越强。 A series of shielding analyses have been performed to estimate the material composition and optimum thickness required for a new radiation shield with various rare earth doped polymer and heavy metal mixtures. The neutron and γ photon fluxes have been calculated by Monte Carlo N Particle(MCNP) transport code. The results indicate that the relative fluxes of γ photon and neutron in both traditional and new composite materials follow an exponential decay rule with the distance of penetration. It can be seen that the composite material consisting of rare earth doped polymer and heavy metal has stronger neutron shielding performance than lead boron polyethylene, but weaker γ shielding effectiveness than W Ni alloy. It is also found that materials with more components of rare earth elements don’t always provide better neutron shielding performance.  相似文献   

16.
Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward–backward (FB) and directionally coupled forward–backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.  相似文献   

17.
强流重离子加速器(HIAF)是中国科学院近代物理研究所自主研制的一台高能强流重离子加速器,它可以实现p到U的全离子加速。为了保证HIAF运行时的辐射安全,针对该装置的增强器(BRing)及高能外靶实验终端,利用蒙特卡洛程序FLUKA及外推法计算得到了加速p,C及U三种离子时所需的辐射屏蔽。结果表明,加速质子时所需屏蔽厚度最大,并以此为依据给出了全地下结构的屏蔽设计。在此基础上,提出了一种估算高能质子/重离子加速器束流均匀损失时横向屏蔽厚度的方法。结果显示,估算结果与FLUKA计算结果符合较好,验证了该方法的有效性和准确性。High Intensity heavy-ion Accelerator Facility (HIAF) is designed by the Institute of Modern Physics, Chinese Academy of Sciences, which can accelerate particles from proton up to uranium. To guarantee the radiation safety of HIAF during operation, the FLUKA code and extrapolation method were adopted to calculate the shielding thickness. The calculations were based on proton, carbon and uranium particles when losing on the Booster Ring (BRing) and the high-energy experimental terminal. The results indicate that the shielding thickness required for accelerating protons was the largest. Basing on the results, a method for estimating the lateral shielding of a high-energy proton/heavy-ion accelerator was proposed. A good agreement shows between the estimated results and the FLUKA calculated results, the validity and accuracy of the method were verified.  相似文献   

18.
Abstract

The shielding effect of an iron sphere assembly has been tested for a Pu-α-Be neutron source placed in the center of the shield assembly. Emergent neutron and gamma spectra were measured with a stilbene scintillation counter. Discrimination between neutrons and gammas was achieved by the pulse shape discrimination technique based on the zero crossing method. Calculations have been made using the one-dimensional transport code ANISN-Westinghouse version (ANISN-W) and the EUR LiB 15/5 cross section data set. The agreement between measurements and calculations indicates that the cross section set and the calculation model are suitable for studying the iron shielding experiments over the neutron energy range 1.35–10 MeV and the gamma energy range 0.3–6 MeV. Total macroscopic cross sections for fast neutrons, linear attenuation coefficients for gamma rays and half-value thicknesses for neutrons and gammas for the whole energy range and at different energies have been obtained.  相似文献   

19.
FLUKA Monte Carlo radiation transport code has been used to simulate neutron fluence spectrum at iThemba LABS neutron beam facility. Neutron beams with energy up to 200 MeV can be produced using different targets such as 7Li, 9Be and 12C bombarded with monoenergetic protons from the Separated-Sector Cyclotron. Simulated results at 66 MeV were compared with measured data. Different neutron emission angles with respect to the beam axis as well as the neutron background at different positions have been investigated.  相似文献   

20.
朱剑钰  李瑞  黄孟  徐雪峰 《强激光与粒子束》2018,30(2):026003-1-026003-7
提出基于时序处理探测事件的中子多重性计数统计方法。在JMCT粒子输运数值模拟程序的基础上研发了用于统计中子多重性计数的专用数值模拟程序JMCT_NMC,实现在线的中子多重性计数模拟功能。展示了利用中子多重性计数算例检验程序,比较了JMCT_NMC与传统算法计算时间消耗的结果。时序探测事件处理方法不需大量存储粒子信息,在解决中子多重性计数模拟受内存限制问题的同时,提升了计算效率。在JMCT_NMC程序中,时序探测事件模拟手段在探测器关联事件模拟、本底分析等领域还有着更广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号