首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ZnO纳米棒的拉曼和发光光谱研究(英文)   总被引:1,自引:0,他引:1  
本文对采用湿化学方法合成的ZnO纳米棒样品的拉曼光谱和发光光谱进行了研究。由扫描电镜结果可知,合成的ZnO纳米棒具有很好的尺寸发布均匀性,直径在30 nm左右,长度大于1微米。采用显微拉曼光谱技术,得到了632.8 nm波长激发的拉曼光谱,并和体相样品的拉曼光谱进行了对比分析;由325 nm激光波长激发得到的荧光光谱可知样品具有很好的紫外发光性质。  相似文献   

2.
对 Ga N直纳米线的拉曼光谱及光致发光光谱进行了研究。拉曼光谱表明 ,与计算值相比 ,E2 ( high)声子频率在 560 cm- 1有 -9cm- 1的移动 ,这种声子频率显示出向低能带频移及带变宽的特征 ,是由于纳米尺寸效应所引起的结果。体系的光致发光光谱在 3 44 .8nm附近的近带隙发光 ,与文献报道的 Ga N体材料的数值3 65nm相比有一蓝移 ,这是由于量子限制效应造成的  相似文献   

3.
声子限制效应会引起本征硅纳米线拉曼光谱红移及不对称宽化,但研究发现其并非引起硅纳米线拉曼光谱改变的主要因素。研究表明,由于在拉曼光谱测量中,通常使用的入射激光功率都在5 mW以上,激光加热会导致很高的局部温度,从而引起拉曼光谱大幅度红移并对称宽化,这是硅纳米线拉曼光谱红移的主要影响因素。另外,激光功率很高时,由激光激发的载流子会与声子发生Fano型干涉,从而使硅纳米线拉曼光谱发生Fano型红移和不对称宽化。除此之外,对小直径本征硅纳米线,声子限制效应导致波矢选择定弛则弛豫,使不在布里渊区中心的声子也可以参与拉曼散射,因而其拉曼光谱中除常见的几个拉曼峰外还会出现新拉曼峰。  相似文献   

4.
一维纳米材料硅纳米线是目前重要的光电材料之一,采用化学气相沉积法制备了硅纳米线,实验研究了不同功率532 nm激光激发下的拉曼光谱和荧光光谱,随着入射激光功率的增加,一阶拉曼光谱出现红移和非对称加宽,而且红移同入射激光功率成正比,光致荧光光谱出现蓝移和双峰结构。使用声子限域效应、应变效应和激光非均匀加热效应对实验结果进行了分析,并采用matlab模拟了入射激光功率同拉曼频移的理论关系曲线,结果表明激光非均匀加热效应是引起拉曼光谱和光致荧光光谱变化的主要原因。  相似文献   

5.
α-Fe_2O_3纳米线和体材料的拉曼光谱的温度依赖性   总被引:4,自引:0,他引:4  
研究了α-Fe2O3体材料和纳米线的拉曼光谱的频率对温度的依赖性,认为纯温度效应是影响其拉曼光谱温度依赖性的主要因素。讨论了α-Fe2O3纳米线和体材料的拉曼光谱温度依赖性不同的根源。  相似文献   

6.
运用密度泛函理论,在6-31G(d)基组水平上,对二元环组成的SiO2单链、双链纳米线进行几何优化,并对其拉曼振动频率进行计算。结果发现,在两种链状结构的拉曼光谱中,拉曼频移和强度随尺寸的增加单调变化,存在纳米体系中的尺寸效应与各向异性现象。双链两端Si=O的伸缩振动尺寸效应的依赖性大于单链。  相似文献   

7.
Co掺杂ZnO纳米棒的共振拉曼光谱和发光特性   总被引:1,自引:0,他引:1  
采用X射线衍射(XRD)和透射电子显微镜(TEM)手段对微乳液法合成的Zn0.9Co0.1O纳米棒进行了表征.通过室温下的共振拉曼光谱和光致发光光谱手段,研究了所合成纳米材料的共振拉曼光谱和发光特性,并与体相ZnO的研究结果对比,发现合成的材料具有四阶声子紫外共振拉曼散射,而体相材料只有两阶,并观察到在紫外和可见区域所...  相似文献   

8.
在聚乙烯吡咯烷酮(PVP)存在下,用多元醇还原硝酸银,Cu(NO3)2作为保护剂,快速有效的合成大量银纳米线,并优化了反应条件,得到结构均一、分散性较好的银纳米线。以罗丹明B为探针分子检测了该银纳米基底的表面增强效应,结果表明该基底对罗丹明B的表面增强效果明显,其表面增强因子可达6.4×105。文中利用这种基底得到了右旋肉碱的表面增强拉曼光谱(SERS),与其固体常规拉曼光谱(NRS)和10-3 mol·L-1水溶液的拉曼光谱对比,并对各自的峰位进行了归属。右旋肉碱固体在3 100~2800和1 700~200 cm-1处有明显拉曼振动峰,在右旋肉碱的表面增强拉曼光谱中,1700~200 cm-1处的峰得到了明显的增强。经分析,右旋肉碱分子与银纳米基底呈180°。本文还用合成的纳米银基底得到了不同浓度右旋肉碱溶液的表面增强拉曼光谱,其最低检测浓度为10-6 mol·L-1。右旋肉碱是一种重要的心血管药物,本文为其研究提供了较全面的拉曼光谱信息,为右旋肉碱的快速、特征、痕量监测提供了有力依据,也为进一步研究右旋肉碱的药理学提供了重要参考。  相似文献   

9.
张雅婷  徐章程  姚建铨 《光学学报》2012,32(9):916001-180
为了研究纳米晶在溶液中的生长规律,设计并实现了一个能够实时监测纳米晶生长的原位透射光谱系统。利用该系统对PbS纳米线和纳米点在水相中生长过程进行了原位光谱检测,发现十二烷基硫酸钠对PbS纳米晶的定向生长起了非常重要的作用。  相似文献   

10.
金纳米粒子的电化学合成及光谱表征   总被引:8,自引:0,他引:8  
采用电化学方法合成各种形状的金纳米粒子,生成的金纳米粒子形貌与施加电流有关,通过匀速递增电流电解的方法,可制备得到哑铃形,球形以及棒状金纳米粒子,采用恒电流电解方法主要获得球形及哑铃形纳米粒子。利用透射电镜、紫外-可见光谱及拉曼光谱对金纳米粒子进行相关表征。紫外-可见光谱研究发现金纳米棒出现位于近红外区间的吸收峰(985 nm),由此推测棒的长径比约为6。以结晶紫为探针分子,研究了金纳米粒子的表面增强拉曼光谱(SERS)效应,并分析得出其平躺的吸附模式。根据形貌表征的结果推断了纳米粒子的生长机理。  相似文献   

11.
Tin (Sn) crystal growth on Sn-based anodes in lithium ion batteries is hazardous for reasons such as possible short-circuit failure by Sn whiskers and Sn-catalyzed electrolyte decomposition, but the growth mechanism of Sn crystals during battery cycling is not clear. Here we report different growth mechanisms of Sn crystal during the lithiation and delithiation processes of SnO(2) nanowires revealed by in situ transmission electron microscopy (TEM). Large spherical Sn nanoparticles with sizes of 20-200nm grew instantaneously upon lithiation of a single-crystalline SnO(2) nanowire at large current density (j>20A/cm(2)), which suppressed formation of the Li(x)Sn alloy but promoted agglomeration of Sn atoms. Control experiments of Joule-heating (j≈2400A/cm(2)) the pristine SnO(2) nanowires resulted in melting of the SnO(2) nanowires but not Sn particle growth, indicating that the abnormal Sn particle growth was induced by both chemical reduction (i.e., breaking the SnO(2) lattice to produce Sn atoms) and agglomeration of the Sn atoms assisted by Joule heating. Intriguingly, Sn crystals grew out of the nanowire surface via a different "squeeze-out" mechanism during delithiation of the lithiated SnO(2) nanowires coated with an ultra-thin solid electrolyte LiAlSiO(x) layer. It is attributed to the negative stress gradient generated by the fast Li extraction in the surface region through the Li(+)-conducting LiAlSiO(x) layer. Our previous studies showed that Sn precipitation does not occur in the carbon-coated SnO(2) nanowires, highlighting the effect of nanoengineering on tailoring the electrochemical reaction kinetics to suppress the hazardous Sn whiskers or nanoparticles formation in a lithium ion battery.  相似文献   

12.
采用简单的热蒸发方法得到具有不同尺寸的混合ZnO-Zn2SnO4 (ZnO-ZTO)纳米线,并对纳米线进行结构和成分分析,试验还以甲基橙溶液为处理对象考察了ZnO-ZTO纳米线的光催化活性.结果表明ZnO-ZTO 混合纳米线的光催化性较纯ZnO、纯Zn2SnO4纳米线有较大提高; 光催化剂浓度对光降解效率有很大影响, 与纯ZnO、纯Zn2SnO4纳米线相比,少量的ZnO-ZTO纳米线即达到较高的光催化效率;并且光催化活性随着纳米线直径的减小而增加. 实验表明异质结的存在能够加快电子空穴的分离,提高光催化活  相似文献   

13.
用SnO和Zn的均匀混合物在高温下共烧通过VLS机制制备出孪晶ZnO纳米线的均匀结构。SEM图像显示孪晶ZnO纳米线的直径在100~200nm之间,长度在几十微米到几百微米之间的范围内,有的甚至达到了毫米级,产率也非常的高。TEM图像中ZnO孪晶纳米线顶端的金属Sn颗粒表明了孪晶结构的Sn催化生长。高分辨电子图谱显示了氧化锌纳米线孪晶结构的特征。电子衍射分析发现孪晶氧化锌的晶带轴的方向是[0110],孪晶面为(1013),并且通过明场像和暗场像分析了孪晶纳米线的晶格关系,确定了孪晶纳米线的汽-液-固(VLS)生长机制。  相似文献   

14.
Qiu GM  Xu CK  Huang C 《光谱学与光谱分析》2011,31(11):2906-2909
采用高温固相法合成了Ca2 SnO4∶Tb3+绿色荧光粉.利用X射线衍射分析了Ca2 SnO4∶Tb3+物相的形成.测量了Ca2 SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移.发射光谱由四个主要发射峰组成,峰值...  相似文献   

15.
Ga掺SnO2单晶纳米线和SnO2/Ga2O3自组织异质微米梳是通过简单的热蒸发沉淀法一步制得的,并通过X射线粉末衍射(XRD)、场激发扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、X射线能量散射谱仪(EDS)、选区电子衍射谱(SAED)进行表征.从FE-SEM的图片上可以看出生成的产物具有纳米线和一种新的微米梳状形貌.XRD、SAED和EDS显示他们是单晶四角形的SnO2.产物的主干呈带状,纳米带阵列均匀的分布在主干的一侧或两侧.大量的Ga2O3纳米颗粒沉积在微米梳的表面.主干纳米带主要沿着[100]方向生长, 自组织的纳米带分支则在主干的(100)面上沿着[110]或者[110]方向生长.由于Ga的大量掺杂,光致发光谱的衍射峰发生红移并严重变宽.针对SnO2:Ga2O3异质微米梳的生长过程进行了解释,并讨论了实验条件对形貌的影响.  相似文献   

16.
利用水合肼作缓释型碱源和络合剂,采用水热法合成了Zn2SnO4立方多面体。XRD物相分析表明,产物为结晶良好的立方反尖晶石结构Zn2SnO4。FESEM和TEM形貌分析表明,该Zn2SnO4微晶为边长100~400 nm左右的立方体,其光致发光光谱是蓝-绿光发射带(中心590 nm处),在400 ℃空气气氛下退火1 h后,蓝-绿光发射带的强度显著降低。这主要是因为退火处理提高了晶体质量,降低了氧空位浓度,从而降低了可见光发射带的强度。  相似文献   

17.
丁硕  刘玉龙  萧季驹 《物理学报》2005,54(9):4416-4421
对晶粒尺寸在4—80nm范围的纯SnO2纳米颗粒进行了拉曼散射研究.除了SnO2本征拉曼振动峰外,还有几个新的拉曼振动峰和波长在700nm左右的一个发光很强而且峰宽很大的荧光峰被观察到.结果所示,当纳米颗粒尺寸减小时,纳米SnO2颗粒的体相 特征拉曼峰变弱,而由缺陷,表面和颗粒尺寸引起的相关效应呈强势.晶粒尺寸在20nm左右是引起体相拉曼光谱变化的临界尺寸.晶粒尺寸在20nm以下,其体相拉曼峰的发生宽化和峰位移动,以及分别出现在位于571cm-1 的表面振动峰,位于351cm-1 处的界面峰和与表面吸附水分子及氢氧基团的N系列拉曼峰是纳米SnO颗粒的主要特征.这些结果反映了纳米颗粒的微结构变化与颗粒尺寸和表面效应以及它们之间相互作用的信息. 关键词: 2')" href="#">纳米SnO 拉曼光谱 荧光光谱 水分子的吸附  相似文献   

18.
 用溶胶-凝胶-水热过程制备了氧化硅稳定的氧化锡量子点,然后将其分散到氧化硅溶液中,用旋转涂膜的方法制备光学性能良好的氧化硅稳定的氧化锡量子点薄膜。X射线衍射和高分辨透射电镜表征显示氧化锡量子点具有良好的四方金红石晶型,平均粒径约4.0 nm。室温光致发光显示这种氧化硅稳定的氧化锡量子点薄膜在356 nm和388 nm处分别有很强的激子发光和缺陷态发光。根据透射谱拟合得到了氧化锡量子点薄膜的光学禁带宽度,其值约为3.96 eV。  相似文献   

19.
ZnO nanowires were grown on AlN thin film deposited on the glass substrates using a physical vapor deposition method in a conventional tube furnace without introducing any catalysts. The temperature of the substrates was maintained between 500 and 600 °C during the growth process. The typical average diameters of the obtained nanowires on substrate at 600 and 500 °C were about 57 and 22 nm respectively with several micrometers in length. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into the ZnO nanowires for the sample grown at 600 °C. Photoluminescence of the nanowires exhibits appearance of two emission bands, one related to ultraviolet emission with a strong peak at 380-382 nm, and the other related to deep level emission with a weak peak at 503-505 nm. The ultraviolet peak of the nanowires grown at 500 °C was blue shifted by 2 nm compared to those grown at 600 °C. This shift could be attributed to surface effect.  相似文献   

20.
Single-crystalline SnO2 nanowires with sizes of 4-14 nm in diameter and 100-500 nm in length were produced in a molten salt approach by using hydrothermal synthesized precursor. Structural characters of the nanowires were examined by X-ray diffraction and high-resolution electron transmission microscopy. Raman, photoluminescence and X-ray photoelectron spectra of the samples were examined under heat treatments. Three new Raman modes at 691, 514 and 358 cm−1 were recorded and assigned. The former two are attributed to activation of original Raman-forbidden A2uLO mode and the third is attributed to defects in small-sized nanowires. A strong photoluminescence is observed at about 600 nm, the temperature effects is examined and the origin of the PL process is discussed via X-ray photoelectron spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号