首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

2.
Burguera JL  Burguera M  Rondón C 《Talanta》2002,58(6):1167-1175
An on-line flow injection (FI) precipitation–dissolution system with microwave-assisted sample digestion has been developed for the electrothermal atomic absorption spectrometry (ETAAS) determination of trace or ultratrace amounts of molybdenum in human blood serum and whole blood samples. After the exposure of the sample to microwave radiation, the on-line precipitation of molybdenum was achieved by the merging-zone of a 0.5-ml plug of sample with a plug of potassium ferrocyanide, which were carried downstream with a solution of 0.5 mol l−1 of HNO3. The interfering effects of iron and copper were minimized by the introduction of a flow of a 5% (w/v) sodium potassium tartrate (for iron) and 2% (w/v) of thiourea (for copper and zinc) in a 5% (v/v) ammonia and 2% (v/v) ammonium chloride solution previous to the precipitation reaction. The reddish-brown precipitate of molybdenyl ferrocyanide was collected on the walls of a knotted reactor. The precipitate was dissolved with the introduction of 1 ml of a 3.0 mol l−1 NaOH solution and the best performance in terms of detection limit and precision was achieved when a sub-sample of 140 μl was collected in a capillary of a sampling arm assembly, to introduce 20 μl volumes into the atomizer by means of positive displacement with air through a time-based injector. A detection limit (3σ) of 0.1 μg Mo l−1 using an aqueous standard solution was obtained. The method is quantitative and is applied over the range 0.2–20.0 μg Mo l−1. The precision of the method evaluated by ten replicate analyses of aqueous standard solutions containing 0.5 and 1.0 μg Mo l−1 was 2.8 and 3.1% (relative standard deviation, RSD) (for n=5), respectively. Whereas, the precision evaluated by five replicate analysis of a serum and a whole blood sample were 3.3 and 3.8% RSD. An enrichment factor of ca. 3.5 was achieved with the introduction of 0.5 ml aqueous standard solutions at a sample flow rate of 1.0 ml min−1. Recoveries of spiked molybdenum in blood serum and whole blood were in the ranges 96–102 and 94–98%, respectively. The results obtained for two human whole blood certified reference materials were in good agreement with the indicative values.  相似文献   

3.
In this work, a new chelating resin [1,5-bis (2-pyridyl)-3-sulphophenyl methylene] thiocarbonohydrazide immobilised on aminopropyl-controlled pore glass (550 A; PSTH-cpg) was synthesised and packed in a microcolumn which replaced the sample tip of the autosampler arm. The system was applied to the preconcentration of lead. When microliters of 10% HNO3, which acts as elution agent, pass through the microcolumn, the preconcentrated Pb(II) is eluted and directly deposited in a tungsten-rhodium coated graphite tube. With the use of the separation and preconcentration step and the permanent modifiers, the analytical characteristics of the technique were improved. The proposed method has a linear calibration range from 0.012 to 10 ng ml(-1) of lead. At a sample frequency of 36 h(-1) with a 90 s preconcentration time, the enrichment factor was 20.5, the detection and determination limits were 0.012 and 0.14 ng ml(-1), respectively and the precision, expressed as relative standard deviation, was 3.2% (at 1 ng ml(-1)). Results from the determination of Pb in biological certified reference materials were in agreement with the certified values. Seawaters and other biological samples were analysed too.  相似文献   

4.
Selective sorption of Sb(III) on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel) has been used for determination of Sb(III). A flow-injection system comprising a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was eluted with nitric acid directly into the graphite furnace and determined by AAS. The detection limit for antimony under the optimum conditions was 0.3 ng mL–1. This procedure was used for determination of antimony in natural water, soil, vegetation, and a certified sample of a city waste incineration ash (BCR 176).  相似文献   

5.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

6.
8-Hydroxyquinoline (HQ), 2-methyl-8-hydroxyquinoline (CH3-HQ), 5,7-dichloro-2-methyl-8-hydroxyquinoline (Cl2-CH3-HQ), 5,7-dibromo-8-hydroxyquinoline (Br2-HQ), 5-sulfo-7-iodo-8-hydroxyquinoline (ferron) and 5-sulfo-8-hydroxyquinoline (SO3H-HQ) were compared as chelating reagents for on-line sorption preconcentration of cobalt in a knotted reactor (KR) precoated with the reagent. The results obtained with the different HQ derivatives reveal those properties of the chelating reagent responsible for the processes taking place in the KR. The influence of hydrophobicity, acidity, stability of the cobalt chelate and type of substituents in the HQ ring system on the separate steps of the flow injection (FI) preconcentration procedure are discussed. According to the performance characteristics of the different HQ derivatives, the most important parameters for on-line preconcentration in a KR are the hydrophobicity of the reagent and the stability of the chelate complex with the analyte.  相似文献   

7.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   

8.
Flow injection (FI) system incorporating a microcolumn of immobilized diethyldithiocarbamate (DDTC) on surfactant-coated alumina was combined with atomic absorption spectrometry for on-line trace enrichment and determination of silver in different matrices. Silver was deposited on the microcolumn by processing a standard or solution of analyte at pH 3-4 on the column. Injection of 250 μl of ethanol then served to elute the retained species to atomic absorption spectrometry (AAS). A sample volume of 20 ml resulted in a pre-concentration factor of 125, and precision at the 20 μg l−1 was 4% (R.S.D.). The procedure was applied to tap water, well water, rain water, sea water, radiology film, and lead concentrate samples. The accuracy was assessed through recovery experiments, independent analysis by furnace-AAS, and analysis of certified reference material.  相似文献   

9.
A solvent impregnated hollow fibre (SIHF) module has been developed for the preconcentration of lead by using bis(2-ethylhexyl) phosphoric acid (DEHPA) dissolved in kerosene as extractant. The module has been designed for an on-line determination of trace amounts of lead(II) at mg l−1 (ppm) level by flame atomic absorption spectrometry (FAAS).

The SIHF system is based on the metal liquid–liquid distribution between aqueous solutions of different acidity and the mentioned organic solution. The highest enrichment factor of Pb(II) was determined at pH=4.0 using a formic acid/formiate buffer solution.

Preconcentration experiments were carried out at low lead(II) concentration (mg l−1 level) by using the SIHF module. This study includes the influence of hydrodynamic and chemical conditions on the loading and elution of Pb(II) on the SIHF, i.e., flow rate through the fibres, acidity of the eluent (as nitric acid concentration) and the chemical nature of the acid used in the elution. Breakthrough curves were determined for different sampling flow rates, 0.54 ml min−1 was selected to minimise the loading volume of Pb(II) sample. 0.1 M nitric acid was chosen as eluent solution, and perchloric acid also shows appropriate elution characteristics. The degree of concentration obtained for Pb(II) are of 10 fold the original concentration. The quantification limit for Pb(II) achieved with this preconcentration system is 0.17 mg l−1.

The results obtained indicate that the SIHF system can be applied for on-line determination of trace amounts of lead(II) by FAAS.  相似文献   


10.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

11.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

12.
A procedure for determining germanium in soil samples using electrothermal atomic absorption spectrometry is discussed. The analyte is leached from the solid sample by the addition of 1 ml of concentrated hydrofluoric acid to 10-300 mg of sample, and the mixture is then submitted to a 10 min ultrasonic treatment. After adding 0.4 g boric acid and 3 ml concentrated hydrochloric acid, germanium is extracted into 1 ml chloroform and back-extracted into an aqueous phase containing (0.05%, w/v) nickel nitrate. Ten micro liter of aqueous phase are introduced into the atomizer and the analytical signal from germanium is obtained using a fast-heating cycle. The detection limit, calculated using three times the standard error of estimate (sy/x) of the calibration graph, is 0.015 μg g−1. The reliability of the procedure is verified by analyzing several certified reference materials.  相似文献   

13.
采用单阀双阳离子交换树脂微柱并联,设计了双路采样逆向洗脱在线分离富集系统,该系统与原子吸收测量技术相结合,实现了在线分离富集-火焰原子吸收光谱法同时测定水中Cr(Ⅲ)和Cr(Ⅵ),富集1min时,分析速度为60样/h,测定Cr(Ⅲ)和Cr(Ⅵ)的特征浓度分别为6.08μg/L和11.58μg/L(相当于1%吸收),线性范围分别为0~1.0μg/mL和0~2.0μg/mL,对质量浓度为100μg/L的Cr(Ⅲ)和Cr(Ⅵ)测定的相对标准偏差分别为2.9%和3.0%、检出限分别为8.70和10.8μg/L。该法对实际水样加标回收率在94.5%~104.3%之间。  相似文献   

14.
Long X  Hansen EH  Miró M 《Talanta》2005,66(5):1326-1332
The analytical performance of an on-line sequential injection lab-on-valve (SI-LOV) system using chelating Sepharose beads as sorbent material for the determination of ultra-trace levels of Cd(II), Pb(II) and Ni(II) by electrothermal atomic absorption spectrometry (ETAAS) is described and discussed. The samples are adjusted to pH 5.0 on-line in the system for optimum operation. The target ions are adsorbed by chelation on the surface of the beads, contained in a 20 μl microcolumn within the LOV, and following elution by 50 μl 2 M nitric acid, the eluate is, as sandwiched by air segments, introduced into the ETAAS. Based on the consumption of 1.8 ml sample solution, retention efficiencies of 95, 75 and 90%, enrichment factors of 34, 27 and 32, and determination limits of 0.001, 0.07 and 0.02 μg l−1 were obtained for Cd(II), Pb(II) and Ni(II), respectively. The beads can be used repeatedly for at least 20 times without decrease of performance, yet can be replaced at will if the circumstances should so dictate. The optimized procedural parameters showed that 12 samples per hour could be prepared and successfully analyzed. The results obtained for three standard reference materials agreed very well with the certified values.  相似文献   

15.
A preconcentration method by adsorption of cadmium on a niobium wire was developed for the environmental waters, followed by electrothermal atomic absorption spectrometry with a tungsten tube atomizer. After the preconcentration, the niobium wire was directly inserted into the tungsten tube atomizer. In the preconcentration (adsorption) process of cadmium, the optimal immersing time was 60?s. The effects of large amounts of concomitants on the preconcentration of cadmium were evaluated. When 103–104 fold excess of matrix elements existed in aqueous solution at pH 4 and 9, the cadmium response was profoundly affected by the matrix elements. However, the cadmium absorption signal was not significantly influenced at pH 7. Therefore, pH 7 was selected for the application into the real environmental samples. Under the optimal conditions, the detection limit (3S/N) for cadmium by the niobium wire preconcentration method was 7.0?pg?mL?1 and the relative standard deviation was 6.8%. The method with preconcentration on a niobium wire was applied to the determination of cadmium in water and proved to be sensitive, simple and convenient. Because this preconcentration method can be utilized in the in situ treatment of trace cadmium in environmental water samples, it was unnecessary to carry the water samples to the analytical work place. The technique was shown to be useful for the determination of cadmium in environmental water samples at 0.1–1?µg?L?1 levels.  相似文献   

16.
Silk fibroin is a kind of polypeptide with functional amino acids in its structure. The electric charges in its molecular chains originating from the dissociation of acidic groups, i.e., hydroxyl, phenol and carboxyl, provide vast potentials for the retention of metal species of interest. In this study, the selective retention of Cu2+ with silk fibroin at pH 6.0 was investigated and a novel on-line procedure for separation/preconcentration of Cu2+ from complex sample matrices was thus developed by using a sequential injection system with an electrothermal atomic absorption spectrometry. A novel concept of enrichment index (EI), i.e., defined as enrichment factor (EF) obtained by consuming unity of sample volume (ml), was proposed for evaluating the enrichment efficiency of a flow-based preconcentration procedure. With a sampling volume of 900 μl, an EI of 30.3 (EF = 27.3) was achieved, which was much improved as compared to that of reported procedures. A detection limit of 8.0 ng l−1 was achieved within a linear range of 0.025-1.5 μg l−1 along with a precision of 2.2% R.S.D. at 0.5 μg l−1. The practical applicability of this procedure was validated by analyzing a certified reference material of riverine water (GBW08608) and a certified reference material of seawater (NASS-5) achieving satisfactory agreements between the certified and the obtained values. A spiking recovery was also performed by using a cave water sample.  相似文献   

17.
In this paper, two time-based flow injection (FI) separation pre-concentration systems coupled to graphite furnace atomic absorption spectrometry (GFAAS) for tellurium determination are studied and compared. The first alternative involves the pre-concentration of the analyte onto Dowex 1X8 employed as packaging material of a micro-column inserted in the flow system. The second set-up is based on the co-precipitation of tellurium with La(OH)3 followed by retention onto XAD resins. Both systems are compared in terms of limit of detection, linear range, RSD%, sample throughput, micro-columns lifetime and aptitude for fully automatic operation.  相似文献   

18.
This paper reports the development of a new methodology for the determination of cobalt in biological samples by using a flow injection system with loaded DPTH-gel as solid phase to preconcentrate analytes. The procedure is based on the on-line preconcentration of cobalt on a microcolumn of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The trapped cobalt is then eluted with 1% tartaric acid and 1% citric acid (7.1 mL) and determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The analytical figures of merit for the determination of cobalt are as follows: detection limit (3S), 8.5 ng mL–1; precision (RSD), 5.8% for 100 ng mL–1 of cobalt; enrichment factor, 13 (using 7.3 mL of sample); sampling frequency, 40 h–1 using a 60-s preconcentration time. For a 120-s preconcentration time (14.6 mL of sample volume) a detection limit of 5.7 ng mL–1, an RSD under 5% at 50 ng mL–1, an enrichment factor of 25, and a sampling frequency of 24 h–1 were reported. The precision and accuracy of the method were checked by analysis of biological certified reference materials.  相似文献   

19.
Gold in ores was determined by flame atomic absorption spectrometry following on-line preconcentration by sorbent extraction in a flow-injection system. The medium polarity adsorption resin Amberlite XAD-8 packed in a 220-μl micro-column was used to collect gold(III) from hydrochloric acid sample solutions for 40 s at 7.6 ml/min. Ethanol was used to elute the adsorbed analytes into the nebulizer. Optimization studies were made on sample loading rate, elution rate and sample acidity. Some possible interferences on the determination are discussed. A 35-fold enrichment was achieved at a sampling frequency of 60 h?1 and with an RSD of 1.4%. The detection limit (3σ) and 2 μg l?1. Results for gold in ore samples showed good agreement with those obtained using activated carbon adsorption preconcentration. The recoveries were 97–108%.  相似文献   

20.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号