首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
The general surface group conjecture asks whether a one-relator group where every subgroup of finite index is again one-relator and every subgroup of infinite index is free (property IF) is a surface group. We resolve several related conjectures given in Fine et al. (Sci Math A 1:1–15, 2008). First we obtain the Surface Group Conjecture B for cyclically pinched and conjugacy pinched one-relator groups. That is: if G is a cyclically pinched one-relator group or conjugacy pinched one-relator group satisfying property IF then G is free, a surface group or a solvable Baumslag–Solitar Group. Further combining results in Fine et al. (Sci Math A 1:1–15, 2008) on Property IF with a theorem of Wilton (Geom Topol, 2012) and results of Stallings (Ann Math 2(88):312–334, 1968) and Kharlampovich and Myasnikov (Trans Am Math Soc 350(2):571–613, 1998) we show that Surface Group Conjecture C proposed in Fine et al. (Sci Math A 1:1–15, 2008) is true, namely: If G is a finitely generated nonfree freely indecomposable fully residually free group with property IF, then G is a surface group.  相似文献   

3.
With graphs considered as natural models for many network design problems, edge connectivity κ′(G) and maximum number of edge-disjoint spanning trees τ(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G (see Cunningham, in J ACM 32:549–561, 1985; Matula, in Proceedings of 28th Symposium Foundations of Computer Science, pp 249–251, 1987, among others). Mader (Math Ann 191:21–28, 1971) and Matula (J Appl Math 22:459–480, 1972) introduced the maximum subgraph edge connectivity \({\overline{\kappa'}(G) = {\rm max} \{\kappa'(H) : H {\rm is} \, {\rm a} \, {\rm subgraph} \, {\rm of} G \}}\) . Motivated by their applications in network design and by the established inequalities $$\overline{\kappa'}(G) \ge \kappa'(G) \ge \tau(G),$$ we present the following in this paper:
  1. For each integer k > 0, a characterization for graphs G with the property that \({\overline{\kappa'}(G) \le k}\) but for any edge e not in G, \({\overline{\kappa'}(G + e) \ge k+1}\) .
  2. For any integer n > 0, a characterization for graphs G with |V(G)| = n such that κ′(G) = τ(G) with |E(G)| minimized.
  相似文献   

4.
By a well-known result of Green (Proc R Soc A 237:574?C581, 1956) and the formal definition of Ellis and Wiegold (Bull Austral Math Soc 60:191?C196, 1999), there is an integer t, say corank(G), such that ${|\mathcal{M}(G)| = p^{\frac{1}{2}n(n-1)-t}}$ . In Niroomand (J Algebra 322:4479?C4482, 2009), the author showed for a non-abelian group G, corank(G)????log p (|G|)?2 and classified the structure of all non-abelian p-groups of corank log p (|G|)?2. In the present paper, we are interesting to characterize the structure of all p-groups of corank log p (|G|)?1.  相似文献   

5.
A well known theorem of Schur states that for any group G, if G/Z(G) is finite, then G′ is finite. We give a very short and elementary proof of a further generalization of the converse of Schur’s theorem proved by Niroomand [5] and Sury [7] and also improve the bound for the order of G/Z(G) obtained by Niroomand and Sury.  相似文献   

6.
Northcott’s book Finite Free Resolutions (1976), as well as the paper (J. Reine Angew. Math. 262/263:205–219, 1973), present some key results of Buchsbaum and Eisenbud (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974) both in a simplified way and without Noetherian hypotheses, using the notion of latent nonzero divisor introduced by Hochster. The goal of this paper is to simplify further the proofs of these results, which become now elementary in a logical sense (no use of prime ideals, or minimal prime ideals) and, we hope, more perspicuous. Some formulations are new and more general than in the references (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974; Finite Free Resolutions 1976) (Theorem 7.2, Lemma 8.2 and Corollary 8.5).  相似文献   

7.
This article continues Ros?anowski and Shelah (Int J Math Math Sci 28:63–82, 2001; Quaderni di Matematica 17:195–239, 2006; Israel J Math 159:109–174, 2007; 2011; Notre Dame J Formal Logic 52:113–147, 2011) and we introduce here a new property of (<λ)-strategically complete forcing notions which implies that their λ-support iterations do not collapse λ + (for a strongly inaccessible cardinal λ).  相似文献   

8.
In a general Hausdorff topological vector space E, we associate to a given nonempty closed set S???E and a bounded closed set Ω???E, the minimal time function T S defined by $T_{S,\Omega}(x):= \inf \{ t> 0: S\cap (x+t\Omega)\not = \emptyset\}$ . The study of this function has been the subject of various recent works (see Bounkhel (2012, submitted, 2013, accepted); Colombo and Wolenski (J Global Optim 28:269–282, 2004, J Convex Anal 11:335–361, 2004); He and Ng (J Math Anal Appl 321:896–910, 2006); Jiang and He (J Math Anal Appl 358:410–418, 2009); Mordukhovich and Nam (J Global Optim 46(4):615–633, 2010) and the references therein). The main objective of this work is in this vein. We characterize, for a given Ω, the class of all closed sets S in E for which T S is directionally Lipschitz in the sense of Rockafellar (Proc Lond Math Soc 39:331–355, 1979). Those sets S are called Ω-epi-Lipschitz. This class of sets covers three important classes of sets: epi-Lipschitz sets introduced in Rockafellar (Proc Lond Math Soc 39:331–355, 1979), compactly epi-Lipschitz sets introduced in Borwein and Strojwas (Part I: Theory, Canad J Math No. 2:431–452, 1986), and K-directional Lipschitz sets introduced recently in Correa et al. (SIAM J Optim 20(4):1766–1785, 2010). Various characterizations of this class have been established. In particular, we characterize the Ω-epi-Lipschitz sets by the nonemptiness of a new tangent cone, called Ω-hypertangent cone. As for epi-Lipschitz sets in Rockafellar (Canad J Math 39:257–280, 1980) we characterize the new class of Ω-epi-Lipschitz sets with the help of other cones. The spacial case of closed convex sets is also studied. Our main results extend various existing results proved in Borwein et al. (J Convex Anal 7:375–393, 2000), Correa et al. (SIAM J Optim 20(4):1766–1785, 2010) from Banach spaces and normed spaces to Hausdorff topological vector spaces.  相似文献   

9.
10.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

11.
The well-known Ore??s theorem (see Ore in Am Math Mon 65:55, 1960), states that a graph G of order n such that d(x)?+?d(y)??? n for every pair {x, y} of non-adjacent vertices of G is Hamiltonian. In this paper, we considerably improve this theorem by proving that in a graph G of order n and of minimum degree ????? 2, if there exist at least n ? ?? vertices x of G so that the number of the vertices y of G non-adjacent to x and satisfying d(x)?+?d(y)??? n ? 1 is at most ?? ? 1, then G is Hamiltonian. We will see that there are graphs which violate the condition of the so called ??Extended Ore??s theorem?? (see Faudree et?al. in Discrete Math 307:873?C877, 2007) as well as the condition of Chvatál??s theorem (see Chvátal in J Combin Theory Ser B 12:163?C168, 1972) and the condition of the so called ??Extended Fan?? theorem?? (see Faudree et?al. in Discrete Math 307:873?C877, 2007), but satisfy the condition of our result, which then, only allows to conclude that such graphs are Hamiltonian. This will show the pertinence of our result. We give also a new result of the same type, ensuring the existence of a path of given length.  相似文献   

12.
Using the level set method of Joó (Acta Math Hung 54(1–2):163–172, 1989), a general two-function topological minimax theorem are proved. The theorem improves and generalizes the known results shown by Cheng and Lin (Acta Math Hung 73(1–2):65–69, 1996), Lin and Cheng (Acta Math Hung 100(3):177–186, 2003), and Frenk and Kassay (Math Program Ser A 105(1):145–155, 2006).  相似文献   

13.
Second-order elliptic operators with unbounded coefficients of the form ${Au := -{\rm div}(a\nabla u) + F . \nabla u + Vu}$ in ${L^{p}(\mathbb{R}^{N}) (N \in \mathbb{N}, 1 < p < \infty)}$ are considered, which are the same as in recent papers Metafune et?al. (Z Anal Anwendungen 24:497–521, 2005), Arendt et?al. (J Operator Theory 55:185–211, 2006; J Math Anal Appl 338: 505–517, 2008) and Metafune et?al. (Forum Math 22:583–601, 2010). A new criterion for the m-accretivity and m-sectoriality of A in ${L^{p}(\mathbb{R}^{N})}$ is presented via a certain identity that behaves like a sesquilinear form over L p ×?L p'. It partially improves the results in (Metafune et?al. in Z Anal Anwendungen 24:497–521, 2005) and (Metafune et?al. in Forum Math 22:583–601, 2010) with a different approach. The result naturally extends Kato’s criterion in (Kato in Math Stud 55:253–266, 1981) for the nonnegative selfadjointness to the case of p ≠?2. The simplicity is illustrated with the typical example ${Au = -u\hspace{1pt}'' + x^{3}u\hspace{1pt}' + c |x|^{\gamma}u}$ in ${L^p(\mathbb{R})}$ which is dealt with in (Arendt et?al. in J Operator Theory 55:185–211, 2006; Arendt et?al. in J Math Anal Appl 338: 505–517, 2008).  相似文献   

14.
For a proper edge coloring of a graph G the palette S(v) of a vertex v is the set of the colors of the incident edges. If S(u) ≠ S(v) then the two vertices u and v of G are distinguished by the coloring. A d-strong edge coloring of G is a proper edge coloring that distinguishes all pairs of vertices u and v with distance 1 ≤ d (u, v) ≤ d. The d-strong chromatic index ${\chi_{d}^{\prime}(G)}$ of G is the minimum number of colors of a d-strong edge coloring of G. Such colorings generalize strong edge colorings and adjacent strong edge colorings as well. We prove some general bounds for ${\chi_{d}^{\prime}(G)}$ , determine ${\chi_{d}^{\prime}(G)}$ completely for paths and give exact values for cycles disproving a general conjecture of Zhang et al. (Acta Math Sinica Chin Ser 49:703–708 2006)).  相似文献   

15.
Hopf??s theorem on surfaces in ${\mathbb{R}^3}$ with constant mean curvature (Hopf in Math Nach 4:232?C249, 1950-51) was a turning point in the study of such surfaces. In recent years, Hopf-type theorems appeared in various ambient spaces, (Abresch and Rosenberg in Acta Math 193:141?C174, 2004 and Abresch and Rosenberg in Mat Contemp Sociedade Bras Mat 28:283-298, 2005). The simplest case is the study of surfaces with parallel mean curvature vector in ${M_k^n \times \mathbb{R}, n \ge 2}$ , where ${M_k^n}$ is a complete, simply-connected Riemannian manifold with constant sectional curvature k ?? 0. The case n?=?2 was solved in Abresch and Rosenberg 2004. Here we describe some new results for arbitrary n.  相似文献   

16.
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let d G (v) be the degree of a vertex v in a graph G. For G[X, Y] and ${S \subseteq V(G),}$ we define ${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$ . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ 1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and ${S \subseteq V(G)}$ such that σ 1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or ${|S \cap X| > |Y|}$ and there exists a cycle containing Y. This degree sum condition is sharp.  相似文献   

17.
In a projective plane $\mathit{PG}(2,\mathbb{K})$ defined over an algebraically closed field $\mathbb{K}$ of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If p is larger than the order of the group, the above classification holds in characteristic p>0 apart from three possible exceptions $\rm{Alt}_{4}$ , $\rm{Sym}_{4}$ , and $\rm{Alt}_{5}$ . Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069–1088, 2007; Miguel and Buzunáriz in Graphs Comb. 25:469–488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672–688, 2008; Yuzvinsky in Compos. Math. 140:1614–1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641–1648, 2009).  相似文献   

18.
A simple path or cycle in a triangulated surface is normal if it intersects any triangle in a finite set of arcs, each crossing from one edge of the triangle to another. A normal curve is a finite set of disjoint normal paths and normal cycles. We describe an algorithm to “trace” a normal curve in $O(\min \{ X, n^2\log X \})$ O ( min { X , n 2 log X } ) time, where $n$ n is the complexity of the surface triangulation and $X$ X is the number of times the curve crosses edges of the triangulation. In particular, our algorithm runs in polynomial time even when the number of crossings is exponential in $n$ n . Our tracing algorithm computes a new cellular decomposition of the surface with complexity $O(n)$ O ( n ) ; the traced curve appears in the 1-skeleton of the new decomposition as a set of simple disjoint paths and cycles. We apply our abstract tracing strategy to two different classes of normal curves: abstract curves represented by normal coordinates, which record the number of intersections with each edge of the surface triangulation, and simple geodesics, represented by a starting point and direction in the local coordinate system of some triangle. Our normal-coordinate algorithms are competitive with and conceptually simpler than earlier algorithms by Schaefer et al. (Proceedings of 8th International Conference Computing and Combinatorics. Lecture Notes in Computer Science, vol. 2387, pp. 370–380. Springer, Berlin 2002; Proceedings of 20th Canadian Conference on Computational Geometry, pp. 111–114, 2008) and by Agol et al. (Trans Am Math Soc 358(9): 3821–3850, 2006).  相似文献   

19.
The nonlinear neutral integro-differential equation $$\frac{d}{dt}x ( t ) =-\int_{t-\tau ( t ) }^{t}a ( t,s ) g \bigl( x ( s ) \bigr) ds+\frac{d}{dt}G \bigl( t,x \bigl( t-\tau ( t ) \bigr) \bigr) , $$ with variable delay τ(t)≥0 is investigated. We find suitable conditions for τ, a, g and G so that for a given continuous initial function ψ a mapping P for the above equation can be defined on a carefully chosen complete metric space $S_{\psi }^{0}$ in which P possesses a unique fixed point. The final result is an asymptotic stability theorem for the zero solution with a necessary and sufficient condition. The obtained theorem improves and generalizes previous results due to Burton (Proc. Am. Math. Soc. 132:3679–3687, 2004), Becker and Burton (Proc. R. Soc. Edinb., A 136:245–275, 2006) and Jin and Luo (Comput. Math. Appl. 57:1080–1088, 2009).  相似文献   

20.
We show that the geometric lifting of the RSK correspondence introduced by A.N. Kirillov (Physics and Combinatorics. Proc. Nagoya 2000 2nd Internat Workshop, pp. 82–150, 2001) is volume preserving with respect to a natural product measure on its domain, and that the integrand in Givental’s integral formula for \(\mathit{GL}(n,{\mathbb{R}})\) -Whittaker functions arises naturally in this context. Apart from providing further evidence that Whittaker functions are the natural analogue of Schur polynomials in this setting, our results also provide a new ‘combinatorial’ framework for the study of random polymers. When the input matrix consists of random inverse gamma distributed weights, the probability distribution of a polymer partition function constructed from these weights can be written down explicitly in terms of Whittaker functions. Next we restrict the geometric RSK mapping to symmetric matrices and show that the volume preserving property continues to hold. We determine the probability law of the polymer partition function with inverse gamma weights that are constrained to be symmetric about the main diagonal, with an additional factor on the main diagonal. The third combinatorial mapping studied is a variant of the geometric RSK mapping for triangular arrays, which is again showed to be volume preserving. This leads to a formula for the probability distribution of a polymer model whose paths are constrained to stay below the diagonal. We also show that the analogues of the Cauchy-Littlewood identity in the setting of this paper are equivalent to a collection of Whittaker integral identities conjectured by Bump (Number Theory, Trace Formulas, and Discrete Groups, pp. 49–109, 1989) and Bump and Friedberg (Festschrift in Honor of Piatetski-Shapiro, Part II, pp. 47–65, 1990) and proved by Stade (Am. J. Math. 123:121–161, 2001; Israel J. Math. 127:201–219, 2002). Our approach leads to new ‘combinatorial’ proofs and generalizations of these identities, with some restrictions on the parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号