首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对非线性不可压缩弹性力学问题,本文提出了一种抽象的稳定化方法并将其应用于非线性不可压缩弹性问题上.在该框架中,我们证明了只要连续的混合问题是稳定的,则可以修正任何满足离散inf-sup条件的混合有限元方法使其是稳定的且最优收敛的.我们将这种抽象的稳定化理论框架应用于非线性不可压缩弹性力学问题,给出了稳定性和收敛性理论结论,并通过数值实验验证了该结论.  相似文献   

2.
We construct stable, conforming and symmetric finite elements for the mixed formulation of the linear elasticity problem in two dimensions. In our approach we add three divergence-free rational functions to piecewise polynomials to form the stress finite element space. The relation with the elasticity elements and a class of generalized $C^1$ Zienkiewicz elements is also discussed.  相似文献   

3.
We present a general framework for the finite volume or covolume schemes developed for second order elliptic problems in mixed form, i.e., written as first order systems. We connect these schemes to standard mixed finite element methods via a one-to-one transfer operator between trial and test spaces. In the nonsymmetric case (convection-diffusion equation) we show one-half order convergence rate for the flux variable which is approximated either by the lowest order Raviart-Thomas space or by its image in the space of discontinuous piecewise constants. In the symmetric case (diffusion equation) a first order convergence rate is obtained for both the state variable (e.g., concentration) and its flux. Numerical experiments are included.

  相似文献   


4.
Summary. There have been many efforts, dating back four decades, to develop stable mixed finite elements for the stress-displacement formulation of the plane elasticity system. This requires the development of a compatible pair of finite element spaces, one to discretize the space of symmetric tensors in which the stress field is sought, and one to discretize the space of vector fields in which the displacement is sought. Although there are number of well-known mixed finite element pairs known for the analogous problem involving vector fields and scalar fields, the symmetry of the stress field is a substantial additional difficulty, and the elements presented here are the first ones using polynomial shape functions which are known to be stable. We present a family of such pairs of finite element spaces, one for each polynomial degree, beginning with degree two for the stress and degree one for the displacement, and show stability and optimal order approximation. We also analyze some obstructions to the construction of such finite element spaces, which account for the paucity of elements available. Received January 10, 2001 / Published online November 15, 2001  相似文献   

5.
A posteriori error estimators for the symmetric mixed finite element methods for linear elasticity problems with Dirichlet and mixed boundary conditions are proposed. Reliability and efficiency of the estimators are proved. Finally, numerical examples are presented to verify the theoretical results.  相似文献   

6.
We construct finite element subspaces of the space of symmetric tensors with square-integrable divergence on a three-dimensional domain. These spaces can be used to approximate the stress field in the classical Hellinger-Reissner mixed formulation of the elasticty equations, when standard discontinuous finite element spaces are used to approximate the displacement field. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and there is one for each positive value of the polynomial degree used for the displacements. For each degree, these provide a stable finite element discretization. The construction of the spaces is closely tied to discretizations of the elasticity complex and can be viewed as the three-dimensional analogue of the triangular element family for plane elasticity previously proposed by Arnold and Winther.

  相似文献   


7.
In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger-Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been previously used by a number of authors, a key new ingredient here is a constructive derivation of the elasticity complex starting from the de Rham complex. By mimicking this construction in the discrete case, we derive new mixed finite elements for elasticity in a systematic manner from known discretizations of the de Rham complex. These elements appear to be simpler than the ones previously derived. For example, we construct stable discretizations which use only piecewise linear elements to approximate the stress field and piecewise constant functions to approximate the displacement field.

  相似文献   


8.
Summary. Both mixed finite element methods and boundary integral methods are important tools in computational mechanics according to a good stress approximation. Recently, even low order mixed methods of Raviart–Thomas-type became available for problems in elasticity. Since either methods are robust for critical Poisson ratios, it appears natural to couple the two methods as proposed in this paper. The symmetric coupling changes the elliptic part of the bilinear form only. Hence the convergence analysis of mixed finite element methods is applicable to the coupled problem as well. Specifically, we couple boundary elements with a family of mixed elements analyzed by Stenberg. The locking-free implementation is performed via Lagrange multipliers, numerical examples are included. Received February 21, 1995 / Revised version received December 21, 1995  相似文献   

9.
This article considers a mixed finite element method for linear elasticity. It is based on a modified mixed formulation that enforces the continuity of the stress weakly by adding a jump term of the approximated stress on interior edges. The symmetric stress are approximated by nonconforming linear elements and the displacement by piecewise constants. We establish ??(h) error bound in the (broken) L2 norm for the divergence of the stress and ??(h) error bound in the L2 norm for both the displacement and the stress tensor. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

10.
We develop a balancing domain decomposition by constraints preconditioner for a weakly over‐penalized symmetric interior penalty method for second‐order elliptic problems. We show that the condition number of the preconditioned system satisfies similar estimates as those for conforming finite element methods. Corroborating numerical results are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
1引 言 对于各向同性,均匀介质的平面线弹性问题,当Lamé常数λ→∞(泊松率v→0.5)时,即对于几乎不可压介质,通常的协调有限元格式的解往往不再收敛到原问题的解,或者达不到最优收敛阶,这就是所谓的闭锁现象(见[3],[7],[8]及[10]).究其原因,在通常的有限元分析中,其误差估计的系数与λ有关,当λ→∞时,该系数将趋于无穷大.因此为克服闭锁现象就需要构造特殊的有限元格式,使得当λ→∞时,有限元逼近解仍然收敛到原问题的解.  相似文献   

12.
13.

We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.

  相似文献   

14.
We present a symmetric version of the nonsymmetric mixed finite element method presented in (Lamichhane, ANZIAM J 50 (2008), C324–C338) for nearly incompressible elasticity. The displacement–pressure formulation of linear elasticity is discretized using a Petrov–Galerkin discretization for the pressure equation in (Lamichhane, ANZIAM J 50 (2008), C324–C338) leading to a non‐symmetric saddle point problem. A new three‐field formulation is introduced to obtain a symmetric saddle point problem which allows us to use a biorthogonal system. Working with a biorthogonal system, we can statically condense out all auxiliary variables from the saddle point problem arriving at a symmetric and positive‐definite system based only on the displacement. We also derive a residual based error estimator for the mixed formulation of the problem. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

15.
A new first-order system formulation for the linear elasticity problem in displacement-stress form is proposed. The formulation is derived by introducing additional variables of derivatives of the displacements, whose combinations represent the usual stresses. Standard and weighted least-squares finite element methods are then applied to this extended system. These methods offer certain advantages such as that they need not satisfy the inf-sup condition which is required in the mixed finite element formulation, that a single continuous piecewise polynomial space can be used for the approximation of all the unknowns, that the resulting algebraic systems are symmetric and positive definite, and that accurate approximations of the displacements and the stresses can be obtained simultaneously. With displacement boundary conditions, it is shown that both methods achieve optimal rates of convergence in the H1-norm and in the L2-norm for all the unknowns. Numerical experiments with various Poisson ratios are given to demonstrate the theoretical error estimates.  相似文献   

16.
We derive a novel finite volume method for the elliptic equation, using the framework of mixed finite element methods to discretize the pressure and velocities on two different grids (covolumes), triangular (tetrahedral) mesh and control volume mesh. The new discretization is defined for tensor diffusion coefficient and well suited for heterogeneous media. When the control volumes are created by connecting the center of gravity of each triangle to the midpoints of its edges, we show that the discretization is stable and first order accurate for both scalar and vector unknowns. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
We analyze the finite element approximation of the spectral problem for the linear elasticity equation with mixed boundary conditions on a curved non-convex domain. In the framework of the abstract spectral approximation theory, we obtain optimal order error estimates for the approximation of eigenvalues and eigenvectors. Two kinds of problems are considered: the discrete domain does not coincide with the real one and mixed boundary conditions are imposed. Some numerical results are presented.  相似文献   

18.
A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated by C-1-Pk-1polynomial vectors,for all k 4.The main ingredients for the analysis are a new basis of the space of symmetric matrices,an intrinsic H(div)bubble function space on each element,and a new technique for establishing the discrete inf-sup condition.In particular,they enable us to prove that the divergence space of the H(div)bubble function space is identical to the orthogonal complement space of the rigid motion space with respect to the vector-valued Pk-1polynomial space on each tetrahedron.The optimal error estimate is proved,verified by numerical examples.  相似文献   

19.
The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements where the discrete stress space is the space of $H(div, Ω\;\mathbb{S}) — P_{k+1}$ tensors whose divergence is a $P_{k-1}$ polynomial on each triangle for $k$ ≥ 2. Such a two dimensional family was extended, by Arnold, Awanou and Winther, to a three dimensional family of mixed elements where the discrete stress space is the space of $H(div, Ω\;\mathbb{S}) — P_{k+2}$ tensors, whose divergence is a $P_{k-1}$ polynomial on each tetrahedron for $k$ ≥ 2. In this paper, we are able to construct, in a unified fashion, mixed finite element methods with symmetric stress approximations on an arbitrary simplex in $\mathbb{R}^n$ for any space dimension. On the contrary, the discrete stress space here is the space of $H(div, Ω\;\mathbb{S}) — P_k$ tensors, and the discrete displacement space here is the space of $L²(Ω ; \mathbb{R}^n) — P_{k-1}$ vectors for $k ≥ n$+1. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and can be regarded as extensions to any dimension of those in two and three dimensions by Hu and Zhang.  相似文献   

20.
半导体器件瞬态模拟的对称正定混合元方法   总被引:3,自引:3,他引:0  
提出具有对称正定特性的混合元格式求解非稳态半导体器件瞬态模拟问题。提出一个最小二乘混合元方法、一个新的具有分裂和对称正定性质的混合元格式和一个解经典混合元方程的对称正定失窃工格式求解电场位势和电场强度方程;提出一个最小二乘混合元格式求解关于电子与空穴浓度的非稳态对流扩散方程,浓度函数和流函数被同时求解;采用标准的有限元方法求解热传导方程。建立了误差分析理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号