首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.  相似文献   

2.
Some potential adsorbents for ethylene/ethane separation are ethylene selective while the others are ethane selective. Among different adsorbents, i.e., zeolites and metal organic frameworks (MOFs), a comparative study is critical to find the more suitable adsorbent for the separation. In this paper, binary ethylene/ethane adsorption performances of zeolites and MOFs, i.e., equilibrium selectivities and adsorption capacities are investigated utilizing ideal adsorbed solution theory (IAST). IAST model is applied at different gas compositions (0.1–0.9 ethylene mole fractions) and pressures up to 100 kPa. The results revealed that the most selective adsorbent toward ethylene is 5A zeolite while MOFs have higher equilibrium adsorption capacities. Among zeolites and MOFs, 5A and Fe2(dobdc) have the highest selectivity (27.4 and 13.6) and capacity (≈2.8 and 5.8 mmol ethylene/g) at 100 kPa and 298 K for a 50/50 mixture. Among ethane selective adsorbents, Silicalite-1 zeolite and UTSA-33a (MOF) have the highest selectivity and capacity (≈2.9 and ≈1.5 mmol ethane/g) at 100 kPa and 298 K for a 50/50 mixture, respectively. Investigation showed that adsorption capacity of ethylene selective adsorbents is higher than that of ethane selective ones.  相似文献   

3.
This study presents the results of the methane adsorption properties of clinoptilolite tuff from Bigadic, Turkey and that of acid treated forms at 273 and 293 K up to 100 kPa using volumetric apparatus. In order to assess changes in structural and gas adsorption properties of clinoptilolite, zeolite sample was treated with acid solutions of varying concentrations (0.1, 0.5, 1.0 and 2.0 M) at 70 °C during 3 h. Structural and thermal characterization of natural and acid treated clinoptilolite samples were carried out using a combination of techniques such as X-ray diffraction, X-ray fluorescence, thermogravimetric, differential thermal analysis and nitrogen adsorption methods. At both temperatures, uptake of methane (CH4) increased in the following order: CLN < CLN-H2 < CLN-H1 < CLN-H05 < CLN-H01. CH4 adsorption capacities of the original and acid treated clinoptilolites were found in the range of 0.476–0.910 mmol/g and 0.398–0.691 mmol/g at 273 and 293 K, respectively.  相似文献   

4.
A new phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin (PS–N–P) was synthesized by P,P-dichlorophenylphosphine oxide modified commercially available ammoniated polystyrene beads, and characterized by Fourier transform infrared spectroscopy and elemental analysis. The adsorption properties of PS–N–P toward U(VI) from aqueous solution were evaluated using batch adsorption method. The effects of the contact time, temperature, pH and initial uranium concentration on uranium(VI) uptake were investigated. The results show that the maximum adsorption capacity (97.60 mg/g) and the maximum adsorption rate (99.72 %) were observed at the pH 5.0 and 318 K with initial U(VI) concentration 100 mg/L and adsorbent dose 1 g/L. Adsorption equilibrium was achieved in approximately 4 h. Adsorption kinetics studied by pseudo second-order model stated that the adsorption was the rate-limiting step (chemisorption). U(VI) adsorption was found to barely decrease with the increase in ionic strength. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as ?G 0, ?H 0 and ?S 0 were derived to predict the nature of adsorption. Adsorbed U(VI) ions on PS–N–P resin were desorbed effectively (about 99.39 %) by 5 % NaOH–10 % NaCl. The synthesized resin was suitable for repeated use.  相似文献   

5.
Granular and monolith carbon materials were prepared from African palm shell by chemical activation with H3PO4, ZnCl2 and CaCl2 aqueous solutions of different concentrations. Adsorption capacity of carbon dioxide and methane were measured at 298 K and 4,500 kPa, and also of CO2 at 273 K and 100 kPa, in a volumetric adsorption equipment. Correlations between the textural properties of the materials and the adsorption capacity for both gases were obtained from the experimental data. The results obtained show that the adsorption capacity of CO2 and CH4 increases with surface area, total pore volume and micropore volume of the activated carbons. Maximum adsorption values were: 5.77 mmol CO2 g?1 at 273 K and 100 kPa, and 17.44 mmol CO2 g?1 and 7.61 mmol CH4 g?1 both at 298 K and 4,500 kPa.  相似文献   

6.
Sorption isotherms for trifluoromethane (R-23) in activated carbon have been measured at ca. 298 and 323 K using a gravimetric microbalance. High-resolution TEM images of the activated carbon show a very uniform microstructure with no evidence of any contaminants. The adsorption in the activated carbon reaches about 22.8 mol kg?1 at 2.0 MPa and 298 K or 17.6 mol kg?1 at 2.0 MPa and 323 K. Three different adsorption models (Langmuir, multi-site Langmuir, and BET equations) have been used to analyze the activated carbon sorption data, with a particular interest in the heat of adsorption (?ΔH). The heat of adsorption for R-23 in the activated carbon was about 29.78 ± 0.04 kJ mol?1 based on the multi-site Langmuir model and is within the range of typical physical adsorption. According to the IUPAC classification, the activated carbon exhibits Type I adsorption behavior and was completely reversible. Compared with our previous work for the sorption of R-23 in zeolites (5A (Ca,Na-A), 13X (Na-X), Na,K-LSX, Na-Y, K,H-Y, Rb,Na-Y) and ionic liquids ([omim][TFES] and [emim][Tf2N]) the activated carbon had the highest adsorption capacity. The adsorption process in the activated carbon also took less time than in the zeolites or the ionic liquids to reach thermodynamic equilibrium.  相似文献   

7.
A one-pot template-free route was developed for the synthesis of novel tetraethylenepentamine modified porous silica as CO2 adsorbents, the obtained materials were characterized by N2 adsorption/desorption, thermogravimetry, elemental analysis, Fourier transform infrared spectrometry,scanning electron microscopy and transmission electron microscopy. It was found that the amine species were inserted into the silica skeleton, which considerably enhanced their dispersion. Compared with similar materials derived from impregnation, the porous structure of the silica can be better reserved, leading to a promising CO2 adsorption capacity of 3.98 mmol CO2/g-adsorbent and a fast adsorption kinetic in simulated flue gas at 348 K. The resulted adsorbents could also be easily regenerated and showed a good durability in multiple adsorption–desorption cycles. All these features make this method a promising option for the preparation of CO2 adsorbents.  相似文献   

8.
Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. To improve the CO2 adsorption efficiency, ONCs were chemically activated to obtain high specific surface area and micro-/mesopore volume with different KOH amounts (i.e., 0, 1, 2, 3, and 4) as an activating agent. The prepared nanoporous carbons (NCs) materials were analyzed by low-angle X-ray diffraction for confirmation of synthesized ONCs structures. The structural properties of the NCs materials were analyzed by high-angle X-ray diffraction. The textural properties of the NCs materials were examined using the N2/77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO2 adsorption capacity was measured by CO2 isothermal adsorption at 298 K/1 bar. From the results, the NCs activated with KOH showed that the increasing specific surface areas and total pore volumes resulted in the enhancement of CO2 adsorption capacity.  相似文献   

9.
To understand the separation behavior of Zr(IV) in the partitioning process for high level liquid waste, a silica-based macroporous adsorbent (TODGA/SiO2-P) was prepared by impregnating N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) into a macroporous silica/polymer composite particles support (SiO2-P). Adsorption and desorption behavior of Zr(IV) from nitric acid solution onto silica-based TODGA/SiO2-P adsorbent were investigated by batch experiment. It was found that TODGA/SiO2-P showed strong adsorption affinity to Zr(IV) and this adsorption process reached equilibrium state around 6 h at 298 K. Meanwhile, HNO3 concentration had no significant effect on the adsorption of Zr(IV) above 1 M. From calculated thermodynamic parameters, this adsorption process could occur spontaneously at the given temperature and was confirmed to be an exothermic reaction. This adsorption process could be expressed by Langmuir monomolecular layer adsorption mode and the maximum adsorption capacity were determined to be 0.283 and 0.512 mmol/g for Zr(IV) at 298 and 323 K, respectively. In addition, more than 90 % of Zr(IV) adsorbed onto adsorbent could be desorbed with 0.01 M diethylenetriamine pentaacetic acid solution within 24 h at 298 K.  相似文献   

10.
Discharge/charge characteristics of Li–O2 batteries at a test temperature of 343 K, using Super P carbon electrodes, have been explored in this paper based on ether-based electrolytes. Compared with ambient temperature, high temperature significantly influences the discharge/charge process of Li–O2 batteries since discharging capacity increases at about 80 % and charging voltage plateau decreases from 4.2 to 3.5 V. The stability of stainless steel mesh with electrolyte at 343 K has been researched using cyclic voltammetry. This paper lays the bases for further research on Li–O2 batteries in high-temperature areas.  相似文献   

11.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

12.
In this work for the first time, Fe3O4@SiO2 core–shell nanoparticles functionalized with isatin groups as a magnetic nanosorbent was applied for the simultaneous extraction of trace amounts of cadmium(II), nickel(II), lead(II), and zinc(II). The characterization of this nanosorbent was studied using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, vibrating sample magnetometer and thermogravimetric analysis. The effect of several factors such as pH, amount of sorbent, extraction time, type and volume of the eluent, sample volume, sorption capacity, and potentially interfering ions was investigated. In the selected conditions, it was observed that the limits of detection were 0.11 ng mL?1 for Cd(II), 0.28 ng mL?1 for Ni(II), 0.47 ng mL?1 for Pb(II), and 0.21 ng mL?1 for Zn(II), and the maximum sorption capacity of this suggested magnetic nanosorbent was 120, 112, 100, and 100 mg g?1 for Cd(II), Ni(II), Pb(II), and Zn(II), respectively. Also, the precision of the method (RSD%) for ten replicate measurements was found 2.5, 2.5, 2.8, and 3.1%, for Cd(II), Ni(II), Pb(II), and Zn(II) ions, respectively. Finally, the suggested procedure was applied for determination of cadmium(II), nickel(II), lead(II), and zinc(II) at trace levels in different water and agricultural products with satisfactory results.  相似文献   

13.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

14.
The world is faced with intrinsic environmental issues. Among these issues, the minimization of greenhouse gas emission to acceptable levels presents a high priority. This study seeks to help to reduce the greenhouse effect in sustainable manner. A resorcinol–formaldehyde xerogel was synthesized at specific conditions and used to prepare an activated carbon xerogel (RF-ACX). RF-ACX exhibited micropores in range of 1.2–1.4 nm, a surface area of 496 m2/g and a cumulative pore volume of 0.81 cm3/g. Scanning electron microscopy showed that it is made of microspherical particles with an almost uniform particle size of 1.3 ± 0.2 μm. Equilibrium and kinetic studies for the adsorption of CO2, CH4 and N2 on RF-ACX were conducted at five temperatures (293, 303, 313, 323, and 333 K) and pressures of up to 1 MPa. The adsorption capacity on RF-ACX was highest for CO2, followed by CH4 and then N2. Isosteric heats of adsorption and adsorption rates were investigated. The measured adsorption equilibria were fitted with the extended multisite Langmuir adsorption model and further used to predict adsorption equilibria of their corresponding binary systems.  相似文献   

15.
In this study, the use of the organic fraction of municipal solid waste as an abundant and low-cost raw material for producing activated carbon was investigated. For this purpose, ZnCl2 was used as a chemical activation agent and the carbonization process took place at 800 °C in N2 atmosphere. Seven sorbents were prepared by chemical activation (pyrolysis under N2 atmosphere at temperature of 800 °C after impregnation with ZnCl2) with different ratios of ZnCl2. The optimum ratio of organic fraction of municipal solid waste to ZnCl2 was inspected via methylene blue number and iodine number (ASTM Designation: D4607–94). The results showed that the adsorbent with 60 % ZnCl2/raw material was the most appropriate one with a satisfactory adsorption capacity, 112.4 mg g?1 for methylene blue and 134.0 mg g?1 for iodine. In addition, the structural analysis of this sorbent was performed using FT-IR, BET surface area, SEM–EDX and thermal analysis. Application of this sorbent to remove Cr(VI) from wastewater was studied to find an adsorption capacity of 66.7 mg g?1. The experimental adsorption equilibrium data were fitted to Langmuir adsorption model with an acceptable adsorption capacity of 66.7 mg g?1.  相似文献   

16.
In this study, the monocomponent adsorption of benzene, toluene and o-xylene (BTX) compounds, as model contaminants present in the petrochemical wastewaters, was investigated using three types of adsorbents: activated carbon (Carbon CD 500), a polymeric resin (MN-202) and a modified clay (Claytone-40). Langmuir and Freundlich models were able to fit well the equilibrium experimental data. The BTX adsorption capacity increased in the following order: Claytone-40 < CD 500 < MN-202. The maximum uptake capacity of MN-202, given by the Langmuir fitting parameter, for benzene, toluene and o-xylene was 0.8 ± 0.1, 0.70 ± 0.08 and 0.63 ± 0.06 mmol/g at 26 °C. Desorption kinetics for polymeric resin with 50 % methanol solution were fast being able to reuse the resin in consecutive adsorption/desorption cycles without loss of sorption capacity. The adsorptive behaviour at batch system was modelled using a mass transfer kinetic model, considering that the sorption rate is controlled by a linear driving force model, which successfully predicts benzene, toluene and o-xylene concentration profiles, with homogeneous diffusivity coefficients, D h , between 3.8 × 10?10 and 3.6 × 10?9 cm2/s. In general, benzene diffuses faster than toluene and o-xylene, which is in agreement with molecular diffusivity in water.  相似文献   

17.
Samples of microporous materials were prepared by pyrolytic deposition of carbon from divinyl in a fluidized bed reactor onto carbon supports obtained from coconut and pine nut shells. The influence exerted on the adsorption capacity for CO2 by the divinyl pyrolysis temperature (in the range 600–750°С) and degree of densification (in the range 6–22%) was studied. Carbon deposition conditions ensuring the specific surface area (SBET) lower than 5 m2 g–1 at the adsorption capacity for СО2 higher than 1 mmol g–1 for both samples were found.  相似文献   

18.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

19.
In this work, activated carbon prepared from pine cone (PCAC) with ZnCl2 as an activation agent under microwave radiation was investigated. The activation step was performed at the microwave input power of 400 W and radiation time of 5 min. The properties of activated carbon were characterized by N2 adsorption Brunauer–Emmett–Teller (BET), scanning electron microscopy and Fourier transform infrared spectroscopy. Results showed that the BET surface area, Langmuir surface area, and total pore volume of PCAC were 939, 1,486 m2/g and 0.172 cm3/g, respectively. Adsorption capacity was demonstrated by the iodine numbers. The adsorptive property of PCAC was tested using methylene blue dye. Equilibrium data was best fitted by the Langmuir isotherm model, showing a monolayer adsorption capacity of 60.97 mg/g. The pseudo-first- and pseudo-second-order kinetic models were examined to evaluate the kinetic data, and the rate constants were calculated. Adsorption of the dyes followed pseudo-first order kinetics. Thermodynamic parameters such as free energy, enthalpy and entropy of dye adsorption were obtained.  相似文献   

20.
Adsorption of phenol from an aqueous solution in batch and continuous flow systems using carbon gels with a microhoneycomb structure (carbon gel microhoneycombs, CMHs) was studied. The obtained monolithic CMHs had fairly straight channels, 25–45 μm in diameter, and the thickness of the walls which form the channels was around 5 μm. The CMHs showed 370 times lower hydraulic resistance when compared with a column packed with particles having the same diffusion path length as it. The obtained CMHs have a hierarchical micro-meso porous structure giving BET surface area in the range of 513–1070 m2·g?1.When used for phenol adsorption from an aqueous solution, the CMHs quickly adsorbed phenol at first, and then, the uptake gradually increased, which indicates that the adsorption mechanism is based on not only simple physisorption. The phenol adsorption capacity increased with the increase in carbonization temperature of the CMH and the decrease in its hydrophilicity. CMHs carbonized at temperatures higher than 1073 K showed the highest phenol adsorption capacity which was around 160 mg·g?1. The CMHs could continuously adsorb phenol from aqueous solutions, and their length of unused bed (LUB) values depended on operation conditions but were in the range of 0.3–0.7 cm. The experimental results indicated that carbon cryogels with a microhoneycomb structure have a high potential to be used for effective separation of phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号