首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this paper, by using the “twisting technique” we obtain a class of new modules A b over the Witt algebras \(\mathcal {W}_{n}\) from modules A over the Weyl algebras \(\mathcal {K}_{n}\) (of Laurent polynomials) for any \(b\in \mathbb {C}\). We give necessary and sufficient conditions for A b to be irreducible, and determine necessary and sufficient conditions for two such irreducible \(\mathcal {W}_{n}\)-modules to be isomorphic. Since \(\mathfrak {sl}_{n+1}(\mathbb {C})\) is a subalgebra of \(\mathcal {W}_{n}\), all the above irreducible \(\mathcal {W}_{n}\)-modules A b can be considered as \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules. For a class of such \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules, denoted by Ω1?a (λ 1, λ 2, ? ,λ n ) where \(a\in \mathbb {C}, \lambda _{1},\lambda _{2},\cdots ,\lambda _{n} \in \mathbb {C}^{*}\), we determine necessary and sufficient conditions for these \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules to be irreducible. If the \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-module Ω1?a (λ 1, λ 2,? ,λ n ) is reducible, we prove that it has a unique nontrivial submodule W 1?a (λ 1, λ 2,...λ n ) and the quotient module is the finite dimensional \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-module with highest weight mΛ n for some non-negative integer \(m\in \mathbb {Z}_{+}\). We also determine necessary and sufficient conditions for two \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules of the form Ω1?a (λ 1, λ 2,? ,λ n ) or of the form W 1?a (λ 1, λ 2,...λ n ) to be isomorphic.  相似文献   

2.
Let G be a finite nonabelian group. Bent functions on G are defined by the Fourier transforms at irreducible representations of G. We introduce a dual basis \({\widehat{G}}\), consisting of functions on G determined by its unitary irreducible representations, that will play a role similar to the dual group of a finite abelian group. Then we define the Fourier transforms as functions on \({\widehat{G}}\), and obtain characterizations of a bent function by its Fourier transforms (as functions on \({\widehat{G}}\)). For a function f from G to another finite group, we define a dual function \({\widetilde{f}}\) on \({\widehat{G}}\), and characterize the nonlinearity of f by its dual function \({\widetilde{f}}\). Some known results are direct consequences. Constructions of bent functions and perfect nonlinear functions are also presented.  相似文献   

3.
\(f\: \cup {\mathcal {A}}\to {\rho}\) is called a conflict free coloring of the set-system\({\mathcal {A}}\)(withρcolors) if
$\forall A\in {\mathcal {A}}\ \exists\, {\zeta}<{\rho} (|A\cap f^{-1}\{{\zeta}\}|=1).$
The conflict free chromatic number\(\operatorname {\chi _{\rm CF}}\, ({\mathcal {A}})\) of \({\mathcal {A}}\) is the smallest ρ for which \({\mathcal {A}}\) admits a conflict free coloring with ρ colors.
\({\mathcal {A}}\) is a (λ,κ,μ)-system if \(|{\mathcal {A}}| = \lambda\), |A|=κ for all \(A \in {\mathcal {A}}\), and \({\mathcal {A}}\) is μ-almost disjoint, i.e. |AA′|<μ for distinct \(A, A'\in {\mathcal {A}}\). Our aim here is to study
$\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,\mu) = \sup \{\operatorname {\chi _{\rm CF}}\, ({\mathcal {A}})\: {\mathcal {A}}\mbox{ is a } (\lambda,\kappa,\mu)\mbox{-system}\}$
for λκμ, actually restricting ourselves to λω and μω.
For instance, we prove that
? for any limit cardinal κ (or κ=ω) and integers n≧0, k>0, GCH implies
$\operatorname {\chi _{\rm CF}}\, (\kappa^{+n},t,k+1) =\begin{cases}\kappa^{+(n+1-i)}&; \text{if \ } i\cdot k < t \le (i+1)\cdot k,\ i =1,\dots,n;\\[2pt]\kappa&; \text{if \ } (n+1)\cdot k < t;\end{cases}$
? if λκω>d>1, then λ<κ +ω implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,d) <\omega\) and λ≧? ω (κ) implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,d) = \omega\);? GCH implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,\omega) \le \omega_{2}\) for λκω 2 and V=L implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,\omega) \le \omega_{1}\) for λκω 1;? the existence of a supercompact cardinal implies the consistency of GCH plus \(\operatorname {\chi _{\rm CF}}\,(\aleph_{\omega+1},\omega_{1},\omega)= \aleph_{\omega+1}\) and \(\operatorname {\chi _{\rm CF}}\, (\aleph_{\omega+1},\omega_{n},\omega) = \omega_{2}\) for 2≦nω;? CH implies \(\operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega,\omega) = \operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega_{1},\omega) = \omega_{1}\), while \(MA_{\omega_{1}}\) implies \(\operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega,\omega) = \operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega_{1},\omega) = \omega\).  相似文献   

4.
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.  相似文献   

5.
Let \({\mathbb{K}}\) be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space \(DW(5,{\mathbb{K}})\) that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to 5+N, where N is the number of equivalence classes of the following equivalence relation R on the set \(\{\lambda\in {\mathbb{K}}\,|\,X^{2}+\lambda X+1\mbox{ isirreducible}\) \(\mbox{in }{\mathbb{K}}[X]\}\): (λ 1,λ 2)∈R whenever there exists an automorphism σ of \({\mathbb{K}}\) and an \(a\in {\mathbb{K}}\) such that (λ 2 σ )?1=λ 1 ?1 +a 2+a.  相似文献   

6.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

7.
8.
We consider the relativistic α-stable process, a pure jump Markov process generated by \(\mathcal{H}^{\alpha} = (-\Delta + m^{2/\alpha})^{\alpha /2}-m\). Let ?C(λ) be the bottom of spectrum of Schrödinger type operator \(\mathcal{H}^{\lambda \mu} = \mathcal{H}^{\alpha} - \lambda \mu\), where μ is a signed Kato measure. We prove the differentiability of C(λ). As an application of it, we establish a large deviation principle for the additive functional \(A_t^{\mu}\) corresponding to the measure μ.  相似文献   

9.
Let G be a finite group possessing a Carter subgroup K. Denote by \(\mathbf {h}(G)\) the Fitting height of G, by \(\mathbf {h}^*(G)\) the generalized Fitting height of G, and by \(\ell (K)\) the number of composition factors of K, that is, the number of prime divisors of the order of K with multiplicities. In 1969, E. C. Dade proved that if G is solvable, then \(\mathbf {h}(G)\) is bounded in terms of \(\ell (K)\). In this paper, we show that \(\mathbf {h}^*(G)\) is bounded in terms of \(\ell (K)\) as well.  相似文献   

10.
For “Riesz-like” kernels K(x,y) = f(|x?y|) on A×A, where A is a compact d-regular set \(A\subset \mathbb {R}^{p}\), we prove a minimum principle for potentials \(U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)\), where μ is a Borel measure supported on A. Setting \(P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)\), the K-polarization of μ, the principle is used to show that if {ν N } is a sequence of measures on A that converges in the weak-star sense to the measure ν, then P K (ν N )→P K (ν) as \(N\to \infty \). The continuous Chebyshev (polarization) problem concerns maximizing P K (μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes P K (μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {ν N } is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of ν N as \(N \to \infty \) is a solution to the continuous problem.  相似文献   

11.
Let \(X=\mathscr {J}(\widetilde{\mathscr {C}})\), the Jacobian of a genus 2 curve \(\widetilde{\mathscr {C}}\) over \({\mathbb {C}}\), and let Y be the associated Kummer surface. Consider an ample line bundle \(L=\mathscr {O}(m\widetilde{\mathscr {C}})\) on X for an even number m, and its descent to Y, say \(L'\). We show that any dominating component of \({\mathscr {W}}^1_{d}(|L'|)\) corresponds to \(\mu _{L'}\)-stable Lazarsfeld–Mukai bundles on Y. Further, for a smooth curve \(C\in |L|\) and a base-point free \(g^1_d\) on C, say (AV), we study the \(\mu _L\)-semistability of the rank-2 Lazarsfeld–Mukai bundle associated to (C, (AV)) on X. Under certain assumptions on C and the \(g^1_d\), we show that the above Lazarsfeld–Mukai bundles are \(\mu _L\)-semistable.  相似文献   

12.
Consider the restriction of an irreducible unitary representation π of a Lie group G to its subgroup H. Kirillov’s revolutionary idea on the orbit method suggests that the multiplicity of an irreducible H-module ν occurring in the restriction π|H could be read from the coadjoint action of H on \(\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H})\), provided π and ν are ‘geometric quantizations’ of a G-coadjoint orbit \(\mathcal {O}^{G}\) and an H-coadjoint orbit \(\mathcal {O}^{H}\), respectively, where \(\text {pr} \colon \sqrt {-1}\mathfrak {g}^{\ast } \to \sqrt {-1}\mathfrak {h}^{\ast }\) is the projection dual to the inclusion \(\mathfrak {h} \subset \mathfrak {g}\) of Lie algebras. Such results were previously established by Kirillov, Corwin and Greenleaf for nilpotent Lie groups. In this article, we highlight specific elliptic orbits \(\mathcal {O}^{G}\) of a semisimple Lie group G corresponding to highest weight modules of scalar type. We prove that the Corwin–Greenleaf number \(\sharp (\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H}))/H\) is either zero or one for any H-coadjoint orbit \(\mathcal {O}^{H}\), whenever (G,H) is a symmetric pair of holomorphic type. Furthermore, we determine the coadjoint orbits \(\mathcal {O}^{H}\) with nonzero Corwin–Greenleaf number. Our results coincide with the prediction of the orbit philosophy, and can be seen as ‘classical limits’ of the multiplicity-free branching laws of holomorphic discrete series representations (Kobayashi [Progr. Math. 2007]).  相似文献   

13.
Let C be an affine plane curve. We consider additive functions \(f{:}\; K\rightarrow K\) for which \(f(x)f(y)=0\), whenever \((x,y)\in C\). We show that if \(K=\mathbb {R}\) and C is the hyperbola with defining equation \(xy=1\), then there exist nonzero additive functions with this property. Moreover, we show that such a nonzero f exists for a field K if and only if K is transcendental over \(\mathbb Q\) or over \(\mathbb {F}_p\), the finite field with p elements. We also consider the general question when K is a finite field. We show that if the degree of the curve C is large enough compared to the characteristic of K, then f must be identically zero.  相似文献   

14.
For every composition λ of a positive integer r, we construct a finite chain complex whose terms are direct sums of permutation modules M μ for the symmetric group \(\mathfrak{S}_{r}\) with Young subgroup stabilizers \(\mathfrak{S}_{\mu}\). The construction is combinatorial and can be carried out over every commutative base ring k. We conjecture that for every partition λ the chain complex has homology concentrated in one degree (at the end of the complex) and that it is isomorphic to the dual of the Specht module S λ . We prove the exactness in special cases.  相似文献   

15.
We derive a new special case C(q) of a general continued fraction recorded by Ramanujan in his Lost Notebook. We give a representation of the continued fraction C(q) as a quotient of Dedekind eta-function and then use it to prove modular identities connecting C(q) with each of the continued fractions \(C(-q)\), \(C(q^{2})\), \(C(q^{3})\), \(C(q^{5})\), \(C(q^{7})\), \(C(q^{11})\), \(C(q^{13})\) and \(C(q^{17})\). We also prove general theorems for the explicit evaluation of the continued fraction C(q) by using Ramanujan’s class invariants.  相似文献   

16.
A subgroup H of a finite group G is quasinormal in G if it permutes with every subgroup of G. A subgroup H of a finite group G is \(\mathfrak {F}_{hq}\)-supplemented in G if G has a quasinormal subgroup N such that HN is a Hall subgroup of G and \((H\cap N)H_{G}/ H_{G} \le Z_{\mathfrak {F}}(G/H_{G})\), where \(H_{G}\) is the core of H in G and \({Z}_{\mathfrak {F}} (G/H_{G})\) is the \(\mathfrak {F}\)-hypercenter of \({G/H}_{G}\). This paper concerns the structure of a finite group G under the assumption that some subgroups of G are \(\mathfrak {F}_{hq}\)-supplemented in G.  相似文献   

17.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

18.
If every k-membered subfamily of a family of plane convex bodies has a line transversal, then we say that this family has property T(k). We say that a family \({\mathcal{F}}\) has property \({T-m}\), if there exists a subfamily \({\mathcal{G} \subset \mathcal{F}}\) with \({|\mathcal{F} - \mathcal{G}| \le m}\) admitting a line transversal. Heppes [7] posed the problem whether there exists a convex body K in the plane such that if \({\mathcal{F}}\) is a finite T(3)-family of disjoint translates of K, then m = 3 is the smallest value for which \({\mathcal{F}}\) has property \({T-m}\). In this paper, we study this open problem in terms of finite T(3)-families of pairwise disjoint translates of a regular 2n-gon \({(n \ge 5)}\). We find out that, for \({5 \le n \le 34}\), the family has property \({T - 3}\) ; for \({n \ge 35}\), the family has property \({T - 2}\).  相似文献   

19.
For a large class of finite dimensional inner product spaces V, over division \(*\)-rings F, we consider definable relations on the subspace lattice \(\mathsf{L}(V)\) of V, endowed with the operation of taking orthogonals. In particular, we establish translations between the relevant first order languages, in order to associate these relations with definable and invariant relations on F—focussing on the quantification type of defining formulas. As an intermediate structure we consider the \(*\)-ring \(\mathsf{R}(V)\) of endomorphisms of V, thereby identifying \(\mathsf{L}(V)\) with the lattice of right ideals of \(\mathsf{R}(V)\), with the induced involution. As an application, model completeness of F is shown to imply that of \(\mathsf{R}(V)\) and \(\mathsf{L}(V)\).  相似文献   

20.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号