首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characterisation of smectite clay, charcoal and prepared clay-charcoal composites was carried out through the X-ray diffractometry, energy dispersive X-ray spectroscopy (EDS), simultaneous thermal analysis (TGA/DTA), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The analysis revealed the composites to have different characteristics from the precursor clay and charcoal, and a peak displacement (d 001) was observed through the X-ray diffraction; this suggests the incorporation of charcoal into the clay lamellas and the formation of a new phase. Tests of adsorption with methylene blue dye were also carried out to evaluate the percentage of dye removal by the adsorbent, in which the composites presented better results than charcoal, indicating great potential for industrial use. A 23 factorial design was employed to evaluate the influence of temperature, ionic strength and pH on the adsorption of methylene blue using the AV50 composite that presented the best adsorption efficiency.  相似文献   

2.
The adsorption of a cationic dye, Basic Blue 16 (BB16), by montmorillonitic clay was studied in detail. Changes in the molecular structure during adsorption were analyzed by FTIR spectroscopy. BB16 adsorption onto the clay mainly results from hydrogen bonding between OH and NH2 groups of dye molecules and OH groups of clay and electrostatic interaction between the negatively charged clay surface and cationic dye. The montmorillonitic clay dose had an inverse effect on the adsorption performance, while the highest dye removal was 305 mg/g at pH 3.6. An increase in temperature and dye concentration positively enhanced the adsorption capacity of the montmorillonitic clay. Temperature had no effect on the adsorption at a dye concentration less than 500 mg/L, while dye adsorption was positively enhanced at elevated dye concentrations. Three-parameter equations provided higher better fitting than two-parameter equations while the Freundlich model had the highest correlation coefficient and the lowest error values with experimental data. The BB16 adsorption was well followed by pseudo-second order model and the rate of adsorption process was controlled by surface and intraparticle diffusion. Thermodynamic evaluations revealed that the adsorption process was spontaneous and endothermic, while the randomness increased during adsorption. Experimental results indicate that montmorillonitic clay from Eskisehir is a promising adsorbent for the removal of cationic dye molecules from aqueous solutions.  相似文献   

3.
This paper assesses the adsorption characteristics of Titan yellow and Congo red on CoFe2O4 magnetic nanoparticles. The adsorption behavior of Titan yellow and Congo red from aqueous solution onto CoFe2O4 magnetic nanoparticles has been determined by investigating the effects of pH, concentration of the dye, amount of adsorbent, contact time, ionic strength and temperature. Experimental results indicated that CoFe2O4 nanoparticles can remove more than 98 % of each dye under optimum operational conditions of a dosage of 15.0 mg CoFe2O4, pH 3.0, initial dye concentration of 22–140 mg L?1, and contact times of 2.0 and 15.0 min for Congo red and Titan yellow, respectively. Langmuir and Freundlich isotherm models have been used to evaluate the ongoing adsorption kinetic equations. Regeneration of the saturated adsorbent was possible by NaCl/acetone solution as eluent. The maximum adsorption capacities were 200.0 and 212.8 mg dye per gram adsorbent for Congo red and Titan yellow, respectively. With the help of adsorption isotherm, thermodynamic parameters such as free energy, enthalpy and entropy have been calculated. On the basis of pseudo-first-order and pseudo-second-order kinetic equations, different kinetic parameters have been obtained.  相似文献   

4.
Dyes are toxic chemicals and the main source of color pollution in the textile wastewaters. Therefore, the use of illite clay as an adsorbent to remove methyl violet dye from solutions was investigated in this study. Equilibrium experiments were carried out in batch mode as a function of temperature, ionic strength, and pH. The equilibrium was attained within 24 hours. The capacity of illite clay increased when pH, temperature, and ionic strength were raised. Four adsorption isotherm models, viz, the Langmuir, Freundlich, Khan, and Sips, were used to analyze the equilibrium data. The nonlinear optimization technique was used to fit the data to the isotherm models, and for this purpose five error functions were used. The equilibrium data could be explained by the Sips isotherm model, and among the entire error equations generally the HYBRID error function provided the lowest sum of the normalized error values. Thermodynamic parameters indicated that dye adsorption had endothermic and unspontaneous nature. Also, the positive enthalpy change indicated that dye uptake occurred by physical binding. The maximum dye capacity of illite was found as 159.95 mg g?1 at 60°C. High dye capacity exposed that illite would be used effectively in cationic dye removal.  相似文献   

5.
Over 30 million tons of excess sludge is discharged from rural municipal sewage plants annually in China and it is predicted that this figure will keep increasing. However, most of the excess sludge is dumped in landfills except for minor applications. In this study, based on low-cost and recycling waste, the excess sludge was used to adsorb organic dyes from aqueous solution after being directly dewatered. The powdered excess sludge (PES) presents selective adsorption property to cationic dyes. Statics batch adsorption experiments of malachite green (MG) on PES were performed to evaluate the effects of pH, adsorbent dosage, and initial MG concentration. Results revealed that the bio-adsorption equilibrium of MG on the PES can be quickly achieved at 30 min with maximum percentage adsorption of 84% at pH 7, initial dye concentration of 20 mg L?1, and adsorbent dosage of 1.5 g L?1. Moreover, the adsorption kinetics follows a pseudo-second-order pathway, and the equilibrium adsorption data could be described well by the Langmuir isotherm equation. Intra-particle diffusion is not the only rate-controlling step in the entire adsorption process. The adsorption process is endothermic, spontaneous, and random. PES can be used as a low-cost adsorbent for refractory cationic organic dye in effluent.  相似文献   

6.
7.
An efficient adsorption system was developed for removal of hazardous Direct Blue 71 as a sample azo dye. The γ-Fe2O3@CuO adsorption system was synthesized based on a sol–gel combustion route and characterized by energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) analysis, vibrating-sample magnetometry (VSM), and field-emission scanning electron microscopy (FESEM) techniques. The response surface methodology with Box–Behnken design was used to evaluate the effects of pH, shaking time, and adsorbent dose on dye adsorption. The results showed that solution pH was the parameter with greatest effect on dye adsorption. Adsorption equilibrium was reached quickly, within 8 min. Study of isotherms revealed adsorption capacity of 45.7 mg g?1 according to the Freundlich model. Sorbent regeneration could be performed using methanol–NaOH (0.1 mol L?1) solution.  相似文献   

8.
Adsorption of anionic dyes onto most of zeolites with net negative charge may be restricted. In this article, a natural nanoclinoptilolite was modified with Cu and the obtained nanomaterial was used as an effective adsorbent for removal of methyl red as an anionic model azo dye up to 90% in 20 min.This new adsorbent was characterized utilizing X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Also, effects of methyl red concentration, mass of sorbent and pH on the removal percent were examined. Moreover, the adsorption mechanism was investigated by plotting the Langmuir and Freundlich adsorption isotherms. The results showed that the data can be fitted with both models. The most adsorption capacity obtained from Langmuir isotherm was about 200 mg/g. Moreover, the Cu modified nanoclinoptilolite was successfully employed for adsorption of another anionic dye, bromothymol blue. The results confirmed that this new adsorbent can be effectively applied for removing of anionic dyes from waste waters.  相似文献   

9.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

10.
In recent decades, industrial wastewater discharge containing toxic or hazardous manufactured dyes has risen tremendously, creating a serious environmental threat. A new hybrid adsorbent, [email protected]–Mn–Zr synthesized by mixing Fe–Mn–Zr metal oxide composite with polyaniline (PANI), was used to study methyl red (MR) dye removal from aqueous solution. The adsorption process was observed to be influenced by the sonication time, dose of [email protected]–Mn–Zr, and initial concentration of MR dye. At an initial MR dye concentration of 25 mg/L, 0.25 g/L of [email protected]–Mn–Zr dose, 15 min of sonication, and pH 7.0, the maximum MR dye adsorption efficiency of 90.34% was achieved. Kinetic analysis was performed using five different kinetic models, which shows that the pseudo-second-order kinetic model had the best fit among the five models. The Langmuir isotherm best fits the adsorption experiments at pH 7.0, yielding a significant MR dye uptake capacity of 434.78 mgg?1. The most significant adsorption mechanisms that have been observed in uptake of MR dye onto [email protected]–Mn–Zr were electrostatic attraction, π-π bond interactions and hydrogen bonding. Response surface optimization study was performed for optimizing the experimental conditions from which maximum dye removal of 98.19% was obtained at contact time of 12 min, initial MR dye concentration of 15 mg/L and [email protected]–Mn–Zr dose of 0.4 g/L. Use of real wastewater and water samples suggest that there is only 6–19% reduction in the dye removal efficiency as compared to the blank or controlled experiments conducted with deionized water.  相似文献   

11.
In this work, a thiol functionalized-clay was prepared by the covalent grafting of 3-mercaptopropyltrimethoxysilane (MPTMS) onto the surface of a natural smectite clay mineral originating from Cameroon. Effectiveness of the grafting process and properties of the resulting hybrid material were studied by various physico-chemical techniques, such as Fourier transform infrared (FTIR) spectroscopy, N(2) adsorption-desorption experiments (surface area measurements by the BET method) and thermal gravimetric analysis (TGA) coupled with mass spectrometry (MS). Sorption of methylene blue (MB), an electroactive cationic dye, was investigated for both the raw clay and its modified counterpart, as a function of shaking time, adsorbate concentration and pH, through batch experiments. A significant enhancement of the adsorption capacity towards MB was observed with the clay bearing thiol groups in comparison with the pristine one. The obtained sorption data matched the Langmuir isotherm model, from which it appeared that the organoclay adsorbed MB at a maximal loading of 1.04mmolg(-1), while the natural clay displayed a significantly poorer performance (0.31mmolg(-1)). The uptake of MB by the modified clay was found to be highly affected by pH, the cationic dye being more effectively adsorbed in alkaline medium. The possible use of the thiol functionalized-clay as electrode modifier for MB sensing purposes was then evaluated by means of carbon paste electrodes, using cyclic voltammetry. A calibration curve was obtained in the concentration range from 1x10(-6) to 1.4x10(-5)molL(-1), with a detection limit of 4x10(-7)molL(-1)(signal/noise=3).  相似文献   

12.
The fate and transport of commonly used antibiotics in soil and groundwater have attracted renewed studies due to increased sensitivities of analytical instruments and thus frequent detections of these compounds even in treated wastewater. Smectite, an important soil component, has large surface area and high cation exchange capacity, while tetracycline (TC) can exist in different forms and charges under different pH conditions. Thus, the interaction between smectite and TC in aqueous systems is of great importance. This research focused on elucidating the mechanisms of TC uptake by smectite, in terms of TC adsorption, cation desorption, and pH changes associated with TC adsorption by smectite and intercalation in smectite. TC adsorption onto smectite was a relatively fast process even though most of the adsorption sites were in the interlayer position involved in intercalation as confirmed by the expansion of d001 spacing. The TC adsorption capacity was equivalent to 0.74–1.11 times the cation exchange capacity for three of the four smectite minerals studied. Accompanying TC adsorption was simultaneous adsorption of H+, resulting in protonation of TC on the dimethylamine group. At higher TC input concentrations further adsorption of H+ resulted in the ratio of H+ adsorbed to TC adsorbed greater than one, suggesting that additionally adsorbed H+ could serve as counterions to partially offset the negative charges on the tricarbonyl or phenolic diketone functional groups. The positive correlations between cations desorbed and TC adsorbed, as well as TC adsorbed and H+ adsorbed, provided a first time evidence to confirm cation exchange as the main mechanism of TC uptake, even under neutral pH conditions.  相似文献   

13.
Influence of physically adsorbed basic red 1 (BR1) dye on the physicochemical properties of natural zeolite (clinoptilolite) and clay (bentonite) was compared using adsorption, FTIR, and TG/DTA methods. A larger adsorption of the dye was observed for bentonite (0.143 mmol/g) than for clinoptilolite (0.0614 mmol/g) per gram of an adsorbent. However, the adsorption values are the same per surface unit (1.8 μmol/m2). The result (per gram) is due to location of dye molecules in interlayer and interparticle space of bentonite with much larger specific surface area than that of clinoptilolite. The dye adsorption leads to a decrease in the specific surface area and the pore volume of both minerals. The adsorption changes also a character of active sites and thermal stability. A TG study shows that the dye adsorption on bentonite changes adsorbed water amounts, weight loss, and decomposition temperature. In the case of zeolite, the dye adsorption insignificantly influences the thermal stability. The dehydration energy distributions calculated from the Q-TG and Q-DTG data demonstrate a complex mechanism of water thermodesorption and the influence of adsorbed dye on this process.  相似文献   

14.
The results of Cr(VI) adsorption on the red clay modified by hexadecyltrimethylammonium bromide are given. The adsorption isotherm of Cr(VI) is determined based on the Langmuir–Freundlich model and exhibits the adsorption capacity of 0.0005 mol/g in relation to Cr(VI). The study of the pH effect showed that the optimal pH range corresponding to the Cr(VI) adsorption maximum on this clay is 2–6.5. Thermal analysis of the modified adsorbent, i.e., Na/HDTMA-clay, shows two DTG peaks at 58–61 and 241 °C. The first one is a consequence of dehydration of the modified clay sample. The other DTG peak results from evaporation and pyrolysis of HDTMA adsorbed on the clay. In the case of Na/HDTMA-Cr-clay three peaks appear at: 64, 232, and 340 °C. The third DTG peak is related to the oxidation of surfactant. Moreover, the raw mineral shows the peak at 543 °C attributed to the clay dehydroxylation.  相似文献   

15.
Adsorption of La, Eu, and Lu on red clay was studied in an initial concentration range of 10?4–10?3 mol/dm3 and a pH range of 2–10. Among the different forms of red clay: T-clay (thermally modified), R-clay (raw, unmodified), Na-clay (sodium form), H-clay (acid form), and HDTMA-clay (surfactant-modified form), T-clay was found to be the most effective adsorbent of the lanthanides studied. The adsorption/desorption isotherms, i.e. log K d versus log c eq dependencies, had a linear character. Among the investigated lanthanides, Eu was most strongly bound by the clay surface and, therefore, parameters a (slopes of the lines log K d = alog c eq + b) of Eu were the highest compared to those for La and Lu. Desorption isotherms were located above adsorption isotherms, which resulted from chemiadsorption of the investigated lanthanides. Changes in lanthanide adsorption with pH were successfully modelled based on the molar fractions of Ln3+, LnOH2+, LnCO3 +, and Ln(CO3) 2 ? species in the aqueous phase [Ln—lanthanide(III)].  相似文献   

16.
The removal of methyl green (MG) dye from aqueous solutions using acid- or alkali-treated Pinus brutia cones (PBH and PBN) waste was investigated in this work. Adsorption removal of MG was conducted at natural pH, namely, 4.5 ± 0.10 for PBH and near 4.8 ± 0.10 for PBN. The pseudo-second-order model appeared to be the most appropriate to describe the adsorption process of MG on both PBN and PBH with a correlation coefficient R2 > 0.999. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P. brutia cones with a correlation factor R2 > 0.999. The ionic strength (presence of other ions: Cl?, Na+, and SO42?) also influences the adsorption due to the change in the surface properties; it had a negative impact on the adsorption of MG on these two supports. A reduction of 68.5% of the adsorption capacity for an equilibrium dye concentration Ce of 30 mg/L was found for the PBH; while with PBN no significant influence of the ionic strength on adsorption was observed, especially in the presence of NaCl for dye concentrations superior to 120 mg L?1.  相似文献   

17.
This study investigates the adsorption of Congo red (CR) dye onto corn cob based activated carbon (CCAC) in the batch process. The activated carbon was characterized using FTIR, SEM, and EDX techniques, respectively. The effect of operational parameters such as the initial dye concentration (10–50?mg/L), contact time (5–160 minutes), and solution temperature (30–50°C) were studied. The amount of the CR dye adsorbed was found to increase as these operational parameters increased. Kinetic data for CR dye adsorption onto CCAC were best represented by the pseudo second-order kinetic model. Four different isotherms namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were used to test the adsorption data. It fitted the Langmuir isotherm model most. Thermodynamic parameters such as ΔH0, ΔS0, and ΔG0 were evaluated. The adsorption process was found to be exothermic and spontaneous. The study shows that CCAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.  相似文献   

18.
Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = ?20.8 kJ/mol), enthalpy change (ΔH = ?3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.  相似文献   

19.
This work describes the use of organosmectite modified electrode to evaluate the electrochemical behaviour and to develop an electroanalytical procedure for the determination of methyl orange (MO) dye in natural water. Organosmectites were prepared by intercalation of hexadecyltrimethylammonium cations at various ratios into the interlayer of smectite. The synthesised organosmectites were characterised by various physicochemical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. An amperometric sensor based on organosmectite as electrode modifier for MO sensing purposes was then evaluated by means of clay-film modified electrode using square wave voltammetry (SWV). The electrochemical procedure for MO analysis by stripping voltammetry involves two successive steps: accumulation of MO at open circuit conditions followed by a voltammetric detection in a same medium by the SWV technique. The peak current obtained (after 5 min preconcentration of 15 µmol L?1 MO solution) on a glassy carbon electrode coated by a thin film of the modified clay was more than 2.5 times higher than that exhibited by the same substrate covered by a film of the pristine clay. Under optimised conditions, a linear calibration curve for MO was obtained in the concentration range from 0.1 to 1.6 µmol L?1, leading to a detection limit of 4 × 10?8 mol L?1 (signal-to-noise ratio equal to 3). The interfering effect of various inorganic and organic ions likely to influence the stripping determination of the MO was also examined. To further validate application of this sensor, the proposed method was successfully used to the determination of MO in natural water with satisfactory results.  相似文献   

20.
In present study, we have investigated the effect of an anionic surfactant sodium dodecyl sulfate (SDS) and clay on calcium alginate beads was studied to remove methylene blue (MB) and to improve the adsorption capacity. The effects of various experimental parameters, such as shaking rate, initial dye concentration, temperature, and pH on the adsorption rate, have been studied. Equilibrium studies showed that the sorption of the dye was enhanced in presence of SDS. Scanning electron microscope (SEM) analysis showed that SDS entrapped beads have more pores and cavities which could be responsible for improved adsorption of MB. The kinetics of cationic dye adsorption nicely followed pseudo-second-order process. The evaluated thermodynamic parameters (ΔG o, ΔH o, ΔS o) suggest endothermic adsorption of MB. The results revealed that the surfactant entrapped alginate could be considered as potential adsorbents for MB removal from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号