首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recently discovered 2D transition titanium metal carbides also called as MXenes (Ti3C2Tx)-based nanocomposite was prepared with Cu2O through wet precipitation technique, and these materials were further developed as the electrode for sensing glucose by chronoamperometry technique. The prepared MXene-Cu2O (Ti3C2Tx-Cu2O) nanocomposite was characterized by XRD, FTIR, UV–Vis spectroscopy, FE-SEM, EDAX, and Raman spectroscopy. Morphological studies of the composites revealed that the micro-octahedral shape of Cu2O is distributed on the surface of MXene with size larger than bare Cu2O. Further, the prepared composite material was fabricated as a sensing probe, and the electrochemical activities were examined by cyclic voltammetric analysis (CV) and chronoamperometric (CA) methods. From the CV and CA investigation, the current response was higher for the composite than the bare material (Cu2O & MXene) in the presence of glucose. The amperometric investigation of MXene-Cu2O composite for the detection of glucose shows a broad linear range (0.01–30 mM) with a sensitivity of 11.061/μAmM cm?2 and a detection limit of 2.83 μM. Further, the fabricated sensor exhibits good selectivity with interfering species like NaCl, fructose, sucrose, urea, ascorbic acid, lactose, short response time, stability, good reproducibility, and compatibility with human serum sample. From the investigation, the prepared MXene-Cu2O composite is a good candidate for the direct detection of glucose molecules and is also well suitable for clinical diagnosis.  相似文献   

2.
A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo12-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo12-GR). PMo12-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo12-GR modified GCE through electrodeposition. The morphology of Cu/PMo12-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo12-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10−2 μM (S/N = 3). In addition, Cu/PMo12-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field.  相似文献   

3.
Nanoporous (NP) PdFe alloy is easily fabricated through one step mild dealloying of PdFeAl ternary source alloy in NaOH solution. Electron microscopy characterization demonstrates that selectively dissolving Al from PdFeAl alloy generates three-dimensional bicontinuous nanospongy architecture with the typical ligament size around 5 nm. Electrochemical measurements show that the NP-PdFe alloy exhibits the superior electrocatalytic activity and durability towards hydrogen peroxide (H2O2) detection compared with NP-Pd and commercial Pd/C catalysts. In addition, NP-PdFe performs high sensing performance towards H2O2 in a wide linear range from 0.5 to 6 mM with a low detection limit of 2.1 μM. This nanoporous structure also can sensitively detect glucose over a wide concentration range (1–32 mM) with a low detection limit of 1.6 μM and high resistance against chloride ions. Along with these attractive features, the as-made NP-PdFe alloy also has a good anti-interference towards ascorbic acid, uric acid, and dopamine.  相似文献   

4.
Nanoporous metals (NPMs) show potential applications as enzyme-free glucose sensors. There are few reports on nanoporous Pd in this area even though their cost is much lower than other NPMs. In this work, we report the formation of Pd-based NPM with improved catalytic activity towards the oxidation of glucose. By dealloying metallic glasses, Pd-based NPMs with hi-continuous networks were obtained. All the Pd-based NPMs show high electrochemical catalytic activity towards glucose oxidation. In this study, NPM with an open, three-dimensional, ligament-channel nanoporous structure resulted by dealloying metallic Pd3oCu4oNiloP2o, producing a pore size of 11 nm and a ligament size of 7 nm as the best configuration towards the direct oxidation reaction of glucose.  相似文献   

5.
An electrochemical non-enzymatic glucose sensor based on copper nanorods (CuNRs) was developed. The CuNRs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, and X-ray photoelectron spectroscopy. The results display a layer of rough cuprous oxide that is formed on the surface of CuNRs. The CuNR- modified glassy carbon electrode exhibits an outstanding capability in terms of nonenzymatic sensing of glucose. The sensor displays high sensitivity (1490 μA?mM?1?cm?2), fast response time (less than 5 s), a low detection limit of 8 nM (S/N = 3), long term stability, and excellent anti-fouling ability. The sensor was applied to the detection of glucose in (spiked) human serum and in black ice tea, with relative standard deviations (for n = 6) of 1.7 % and 1.9 %, respectively.
Graphical abstract The surface of Cu nanorods was covered with cuprous oxide, which increased the surface area of the nanorods and provided more catalytic active sites for the electro-oxidation of glucose. Good linearity and selectivity were obtained in glucose sensing.
  相似文献   

6.
In this study, we demonstrated a novel fabrication method of three dimensional nanoporous gold thin film (NPGF) onto gold (Au) substrate using electrochemical deposition method. Scanning electron microscope (SEM) investigation reveals the formation of highly-ordered pores, approximately 30 nm in diameter and 150 nm thick. The NPGF-modified electrode shows a linear range (0.1–40 μM) for dopamine detection in the presence of ascorbic acid. The electrochemical measurements of mixtures of dopamine, ascorbic acid, and uric acid in human serum sample for real sample applications was also investigated based on differential pulse voltammetry (DPV) technique. These high sensitivity and selectivity features of the proposed NPGF biosensor offer great promise for real sample biosensor application.  相似文献   

7.
An ultrathin platinum film is fabricated on a nanoporous gold (NPG) scaffold through a catalytic chemical deposition method. The morphology and active surface area of the deposited Pt film, which will greatly influence the electro-catalytic properties of the catalyst, can be controlled by adjusting the deposition condition. Compared with bare NPG and high Pt loaded NPG, the performances of methanol electro-oxidation on the low-Pt-content bimetallic film are greatly improved, both in its catalytic current enhancement and signal stability. The best condition for methanol oxidation can be achieved when the area ratio of deposited Pt and uncovered Au was 3:1.  相似文献   

8.
Nanoporous platinum–cobalt (NP–PtCo) alloy with hierarchical nanostructure is straightforwardly fabricated by dealloying PtCoAl alloy in a mild alkaline solution. Selectively etching Al resulted in a hierarchical three-dimensional network nanostructure with a narrow size distribution at 3 nm. The as-prepared NP–PtCo alloy shows superior performance toward ethanol and hydrogen peroxide (H2O2) with highly sensitive response due to its unique electrocatalytic activity. In addition, NP–PtCo also exhibits excellent amperometric durability and long-term stability for H2O2 as well as a good anti-interference toward ascorbic acid, uric acid, and dopamine. The hierarchical nanoporous architecture in PtCo alloy is also highly active for glucose sensing electrooxidation and sensing in a wide linear range. The NP–PtCo alloy holds great application potential for electrochemical sensing with simple preparation, unique catalytic activity, and high structure stability.  相似文献   

9.
A non-enzymatic amperometric sensor is developed based on the graphite electrode modified with functionalized graphene for the determination of β, d (+)-glucose. Cyclic voltammetry and electrochemical impedance spectroscopy techniques are used to study the behavior. Atomic force microscopy was used to study the surface topography of the working electrode before and after its modification. The sensor enabled the direct electrochemical oxidation of β, d (+)-glucose in alkaline medium and responded linearly to the analyte over the range from 0.5?×?10?3 to 7.5?×?10?3?M with a limit of detection of 10?μM. The sensor is found to exhibit a better sensitivity of 28.4?μA?mM?1?cm?2, good stability, and shelf life. The sensitivity of the sensor to β, d (+)-glucose was not affected by the commonly co-existing interfering substances such as l-ascorbic acid, dopamine, uric acid, and acetaminophen.  相似文献   

10.
This article reviews the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose. Following a brief discussion of the merits and limitations of enzymatic glucose sensors, we discuss the history of unraveling the mechanism of direct oxidation of glucose and theories of non-enzymatic electrocatalysis. We then review non-enzymatic glucose electrodes based on the use of the metals platinum, gold, nickel, copper, of alloys and bimetals, of carbon materials (including graphene and graphene-based composites), and of metal-metal oxides and layered double hydroxides. This review contains more than 200 refs.
Figure This article reviews the history of unraveling the mechanism of direct electrochemical glucose oxidation and the attempts to successfully develop non-enzymatic electrochemical glucose sensors over the past 5 years.
  相似文献   

11.
The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation.  相似文献   

12.
Three-dimensional nanoporous Pt networks with a high surface area were directly grown on titanium substrates through a simple hydrothermal-assisted seed growth method.  相似文献   

13.
Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accordingly, they have been employed in various environmental and clinical applications. The use of spore-based sensing systems offers the unique advantage of long-term preservation of the sensing cells by taking advantage of the environmental resistance and ruggedness of bacterial spores. In this work, we have incorporated spore-based whole-cell sensing systems into centrifugal compact disk (CD) microfluidic platforms in order to develop a portable sensing system, which should enable the use of these hardy sensors for fast on-field analysis of compounds of interest. For that, we have employed two spore-based sensing systems for the detection of arsenite and zinc, respectively, and evaluated their analytical performance in the miniaturized microfluidic format. Furthermore, we have tested environmental and clinical samples on the CD microfluidic platforms using the spore-based sensors. Germination of spores and quantitative response to the analyte could be obtained in 2.5–3 h, depending on the sensing system, with detection limits of 1 × 10−7 M for arsenite and 1 × 10−6 M for zinc in both serum and fresh water samples. Incorporation of spore-based whole-cell biosensing systems on microfluidic platforms enabled the rapid and sensitive detection of the analytes and is expected to facilitate the on-site use of such sensing systems.  相似文献   

14.
Huang CJ  Lin JL  Chen PH  Syu MJ  Lee GB 《Electrophoresis》2011,32(8):931-938
This study presents a new microfluidic system capable of precise measurements of two important biomarkers, urea and creatinine, automatically. In clinical applications, high levels of these two biomarkers are early indicators of nephropathy or renal failure and should be monitored on a regular basis. The microfluidic system is composed of a microfluidic chip, a control circuit system, a compressed air source and several electromagnetic valves to form a handheld system. The microfluidic chip is fabricated by using micro-electromechanical systems and microfluidic techniques comprising electrochemical sensor arrays and polydimethylsiloxane-based microfluidic structures such as micropumps/micromixers, normally closed valves and microchannels. The microfluidic system performs a variety of critical processes including sample pretreatment, mixing, transportation and detection on a single chip. The experimental results show that the entire procedure takes approximately 40 min, which is much faster than the traditional method (more than 6 h). Furthermore, the total sample volume consumed in each operation is only 0.1 mL, which is significantly less than that required in a large system (5 mL). The developed automatic microfluidic system may provide a powerful platform for further clinical applications.  相似文献   

15.
We have developed a 3-dimensional (3-D) electrochemical sensor for highly sensitive detection of hydrogen peroxide (H2O2). Porous 3-D carbon nanofibers (CNFs), prepared by electrospinning, served as scaffold on a glassy carbon electrode. The 3-D CNFs were functionalized with platinum nanoparticles (Pt-NPs) by in-situ gas-phase decomposition of platinum salts at high temperature. The Pt-NPs act as an electrocatalyst for the decomposition of H2O2. TEM revealed that large amounts of Pt-NPs are deposited in the electrospun CNFs electrode even without using any stabilizer or reducing reagent. The sensor was investigated by cyclic voltammetry and amperometry and displays a good response to H2O2 with a linear range between 10 μM and 15 mM (R?=?0.9994), a low detection limit (3.4 μM at a signal-to-noise ratio of 3), and a response time of 3 s. The sensor shows excellent stability and selectivity.
Figure
We report the direct growth of the Pt NPs in the 3-D CNFs via electrospinning and sequent thermal treatment. We demonstrate the use of 3-D architecture novel Pt/CNFs electrode for nonenzymatic electrochemical sensing of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.  相似文献   

16.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

17.
We report on a carbon ionic liquid electrode modified with a composite made from Nafion, graphene oxide and ionic liquid, and its application to the sensitive determination of rutin. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. It shows excellent cyclic voltammetric and differential pulse voltammetric performance due to the presence of nanoscale graphene oxide and the ionic liquid, and their interaction. A pair of well-defined redox peaks of rutin appears at pH 3.0, and the reduction peak current is linearly related to its concentration in the range from 0.08 μM to 0.1 mM with a detection limit of 0.016 μM (at 3σ). The modified electrode displays excellent selectivity and good stability, and was successfully applied to the determination of rutin in tablets with good recovery.
Figure
A Nafion, graphene oxide and ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate composite was modified on carbon ionic liquid electrode (CILE) for the sensitive detection of rutin.  相似文献   

18.
Nie Z  Deiss F  Liu X  Akbulut O  Whitesides GM 《Lab on a chip》2010,10(22):3163-3169
The combination of simple Electrochemical Micro-Paper-based Analytical Devices (EμPADs) with commercially available glucometers allows rapid, quantitative electrochemical analysis of a number of compounds relevant to human health (e.g., glucose, cholesterol, lactate, and alcohol) in blood or urine.  相似文献   

19.
Non-enzymatic biosensors based on various nanomaterials with large surface-volume ratios and high catalytic efficiencies have been proposed to compensate for the non-stability and high cost of enzymatic biosensors. However, the construction of a stable, highly sensitive, flexible, three-dimensional (3D), microstructured, non-enzymatic biosensor integrated with a smartphone-based portable system has been challenging. Herein, highly conductive laser-induced graphene (LIG) array with a honeycomb-like 3D microstructure co-decorated with copper(I) oxide and gold nanocatalysts was developed via simple and green electro-deposition and chemical reduction approaches for a miniaturized electrochemical flexible non-enzymatic biosensor. SEM, XRD, Raman and XPS analyzations indicated that the Cu2O and Au nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials were developed successfully. The signal of the biosensor was improved by more than 10 fold compared to the LIG alone due to the co-decorated with copper(I) oxide and gold nanocatalysts. The fabricated electrochemical biochip was integrated with a smartphone-based microstation for glucose monitoring, presenting a larger linear interval of 1–20 mM with an excellent sensitivity of 236 μA/mM/cm2 and a relatively low detection limit of 0.31 μM. Noticeably, the biochip could measure blood sugar on curved surfaces and still deliver stable sensing signals after being bent back-and-forth 25 times. The novel biosensor is a potentially valuable flexible electronic device. The hybrid nanomaterials developed in this work may be applicable to other biosensing, catalytic, and energy devices (supercapacitors and batteries).  相似文献   

20.
Nanoporous nickel hydroxide film has been successfully electrodeposited on titanium substrate from nickel nitrate dissolved in the aqueous domains of the hexagonal lyotropic liquid crystalline phase of Brij 56. Low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies show that the film has a regular nanostructure consisting of a hexagonal array of cylindrical pores with a repeat center-to-center spacing of about 7 nm. Preliminary electrochemical studies are carried out using cyclic voltammetry (CV) and chronopotentiometry technology. A maximum specific capacitance of 578 F g−1 could be achieved for the nanoporous Ni(OH)2 film electrode, suggesting its potential application in electrochemical capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号