首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of iron layers through a chromium spacer in Fe/Cr/Fe trilayers with different roughnesses of interfaces was studied by the Kerr magnetometry and Mandel’shtam-Brillouin light scattering techniques so as to trace the interlayer exchange coupling of the Fe layers depending on the Cr spacer thickness and the sample temperature. It is established that, in a broad range of these parameters, the interlayer exchange in Fe/Cr/Fe structures with sufficiently smooth interfaces is adequately described using the proximity magnetism and half-angle coupling models taking into account the antiferromagnetic properties of chromium. As the interface roughness increases, the well-known biquadratic exchange model becomes valid. This is evidence for the decisive role of the magnetic stiffness of a Cr spacer and the structure of interfaces on the noncollinear exchange coupling in Fe/Cr/Fe trilayers.  相似文献   

2.
The interplay between interfacial disorder and the antiferromagnetic order in Cr leads to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Cr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr leads to results not explained by the conventional model. For nearly ideal interfaces, the Fe–Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results.  相似文献   

3.
The present study reports the effect of swift heavy ion irradiation on structural and magnetic properties of sputtered W/Fe multilayer structure (MLS) having bilayer compositions of [W(10 Å)/Fe(20 Å)]10BL. The MLS is irradiated by 120 MeV Au9+ ions of fluences 1×1013 and 4×1013 ions/cm2. Techniques like X-ray reflectivity (XRR), cross-sectional transmission electron microscopy (X-TEM) and DC magnetization with a vibrating sample magnetometer (VSM) are used for structural and magnetic characterization of pristine and irradiated MLS. Analysis of XRR data using Parratt’s formalism shows a significant increase in W/Fe layer roughness. X-TEM studies reveal that intra-layer microstructure of Fe layers in MLS becomes nano-crystalline on irradiation. DC magnetization study shows that with spacer layer thickness interlayer coupling changes between ferromagnetic to antiferromagnetic.  相似文献   

4.
The antiferromagnetic coupling at the Fe/Cr interfaces, inferred from the orientation of the Cr magnetic moments, is used to estimate the magnetic disorder resulting from the interfacial roughness in Fe/Cr multilayers. A crossover from in-plane to out-of-plane orientation of Cr moments depends on the energy cost in either case: (i) to break the interfacial Fe–Cr antiferromagnetic coupling or (ii) having sites with frustrated Cr–Cr antiferromagnetic coupling in the Cr interlayers. A quantitative model of the magnetic frustration due to interfacial disorder in Fe/Cr multilayer systems is described. The step edge density, or terrace size, required to break the interfacial Fe–Cr coupling and destroy the Fe–Fe interlayer exchange coupling is estimated.  相似文献   

5.
The possibility of appearing jumps in the magnetization curves of Fe/Cr multilayers has been predicted under the assumption that magnetic ordering in chromium interlayers has the form of a linearly polarized spin-density wave. This possibility has been analyz ed for an Fe/Cr/Fe three4ayer film with a conventional quality of Fe/Cr interfaces, which does not ensure a change in the ferromagnetic and antiferromagnetic orientations of the magnetizations of neighboring iron layers with a variation in the thickness of the chromium interlayer by one atomic layer (short oscillation period). The model used suggests that the wave vector of the spin-density wave is responsible for the experime ntally observed long period of these oscillations. Relationships have been derived for the range of thicknesses of chromium interlayers in which the appearance of the predicted effect can be expected, and the magnitude of the effect has been evaluated.  相似文献   

6.
A model is proposed for magnetic ordering in Fe/Cr-type multilayers substantially above the Néel temperature of bulk chromium. Redistribution of the charge (and, hence, spin) density near the Fe/Cr interfaces gives rise to the formation of an essentially inhomogeneous spin-density-wave (SDW) state in the chromium spacer. The spatial structure of the antiferromagnetic order parameter in thick spacers is described. The SDW contribution to the effective exchange coupling between the moments in adjacent iron layers is calculated. The data obtained are used in the interpretation of experimental data on the tunneling spectroscopy of trilayers and neutron diffraction from Fe/Cr superlattices.  相似文献   

7.
The interlayer magnetic coupling of iron layers as a function of the chromium spacer thickness and temperature has been studied for three-layer epitaxial Fe/Cr/Fe films by the methods of Kerr magnetometry and Mandelstam-Brillouin scattering. The results obtained indicate that the short-period component of the interlayer exchange is related to the spin density wave in the chromium spacer.  相似文献   

8.
The magnetic structure of Fe/Cr/Gd superlattices is investigated using complementary methods of SQUID magnetometry and polarized neutron reflectometry. The complex magnetic behavior of the given system is caused by exchange interaction between the 3d (Fe) and 4f (Gd) layers of the ferromagnetic metals through the Cr antiferromagnetic spacer layer. It is found that a nonuniform profile of magnetization forms within the Gd layers under the influence of this interlayer interaction.  相似文献   

9.
The magnetic properties of Fe/Zn/Fe trilayers have been studied by ferromagnetic resonance and magnetization measurements. These measurements have been used to investigate the magnetic anisotropy of the iron layers and the magnetic coupling across the semiconductor spacer. The angular dependence of the resonance spectra has been measured in-plane and out-of-plane in order to deduce magnetic anisotropy constants of the samples. Experimental data were fitted by using an energy-density expression that includes bulk cubic anisotropy, growth-induced uniaxial in-plane anisotropy and perpendicular-surface anisotropy terms. A small ferromagnetic coupling is observed in the trilayers with spacer thickness up to .  相似文献   

10.
A superexchange mechanism is considered for the interlayer exchange coupling in Fe/Si nanostructures. It is assumed that the most important role in this mechanism is played by iron-silicon interfaces, in whose immediate vicinity the contact-induced ferromagnetic phase of body-centered iron monosilicide forms and spin-polarized interface states arise. The magnetic coupling between iron layers is accomplished by means of the interaction of interface states through the normal-semiconductor spacer layer and involves both intraband and interband processes. The nonmonotonic character of the dependence of the interband exchange coupling on the spacer thickness and composition (the occurrence of a maximu, the change in shape, the possible sign reversal of the bilinear component) is caused by competition between the ferro-and antiferromagnetic super-exchange components and by the complex character of the spacer electronic spectrum (in particular, by the occurrence of several equivalent extrema in the semiconductor bands). This model qualitatively reproduces the main features of the mechanism of interlayer exchange coupling in real Fe/Si nanostructures.  相似文献   

11.
The electronic structure and magnetism of Fe3/Crn(1 1 0) (n=1, 3, 5) superlattices (SL) with varying layer thickness have been studied using the full-potential linearized augmented plane-wave (FLAPW) method within the first-principle formalism. The results show that the ferromagnetic state is the preferable phase in the ground state. The magnetic moments of the Fe layers are slightly modified by the presence of the Cr layers. The Cr magnetic moments alternate direction from layer to layer, and an antiferromagnetic coupling between Fe and Cr at the interfacial layer is seen. The magnetic moments of the Cr layers are suppressed because there is a strong hybridization between d-states of both Fe and Cr atoms. Only a small moment is found in the Cr layer. The Cr moment alignment is determined by a delicate balance between the different magnetic interaction.  相似文献   

12.
Investigation has been performed on the interlayer coupling between two Co/Pt multilayers with perpendicular anisotropy separated by Cr spacers. As a function of the Cr spacer thickness, only ferromagnetic interlayer coupling has been observed between the two Co/Pt multilayers in contrast to the oscillatory interlayer coupling between ferromagnetic and antiferromagnetic observed in ferromagnetic layers with in-plane anisotropy separated by Cr spacers. It is the strength of the ferromagnetic interlayer coupling that has been observed to be oscillatory as a function of the Cr spacer thickness with a period of about 7 Å.  相似文献   

13.
In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.  相似文献   

14.
Many useful properties of magnetic multilayers depend on the coupling between the ferromagnetic layers. The coupling often oscillates with the thickness of non-magnetic spacer layers: it is ferro- or antiferromagnetic or even non-collinear near a critical thickness. We investigated the magnetron-sputtered Fe/FeSi multilayers with spacer thickness around 1.7 nm by means of Conversion Electron Mössbauer Spectroscopy with oblique incidence of the γ beam in order to gain information on the orientation of the local magnetic moments in the multilayer plane. The results show that the local moments make an angle of 45°–50° with the direction of the remanent magnetization. This is consistent with strong biquadratic coupling which in turn is expected at this spacer thickness from our magnetic measurements. An analysis of the distribution ofB hf corresponding to different numbers of n.n. Si atoms in the bcc Fe structure points to weak diffusion of Si through the Fe/FeSi interface characterized by a diffusion length of about twice the substrate roughness.  相似文献   

15.
Fe/CeH2−δ multilayers exhibit at room temperature evidence of interlayer exchange coupling. Subsequent Fe layers are either parallel or antiparallel to each other, depending on the Fe and CeH2−δ layer thickness. However, when both layers have thickness larger than 15 Å, the antiferromagnetic structure becomes fragmented into domains laterally limited to a few microns, and the magnetic structures become very fragile. Small magnetic fields of a few Oersteds acting on the samples during growth induce helimagnetic configurations which coexist with antiferromagnetic coupling. The magnetic structures can be permanently destroyed by applying magnetic fields larger than 150 Oe.  相似文献   

16.
Magneto-optic Kerr magnetometry and neutron reflectometry reveal that Fe layers exhibit magnetic exchange coupling through LaHx spacer layers. Ferromagnetic and antiferromagnetic coupling is observed on multilayers of these materials depending on the thickness of the hydride layers, but without oscillatory behavior. Starting from metallic La dihydride spacer layers the effect of dissolving increasingly more hydrogen was examined. Sign and value of the coupling depend crucially on the hydrogen content x. The coupling can be inverted from antiferromagnetic to ferromagnetic and vice versa. These alterations are due to modifications of the electronic structure of the hydride. When the hydrogen absorption saturates the hydride layers become insulating and the exchange coupling is likely to disappear. In this final state the multilayers are always characterized by a very soft ferromagnetic rectangular hysteresis curve. Upon removal of the hydrogen to the initial concentration the original magnetic structure is restored.  相似文献   

17.
对以本征Si及重掺杂p型和n型Si作为中间层的Fe/Si多层膜的层间耦合进行研究,并通过退火,增大Fe,Si之间的扩散,分析界面扩散对层间耦合的影响. 实验结果表明,层状结构良好的制备态的多层膜,Fe,Si之间也存在一定程度的扩散,它是影响层间耦合的 主要因素,远远超过了半导体意义上的重掺杂,使不同种类的Si作为中间层的层间耦合基本 一致.进一步还发现,在一定范围内增大Fe,Si之间的扩散,即使多层膜的层状结构已经有了相当的退化,Fe/Si多层膜的反铁磁耦合强度基本保持不变. 关键词: Fe/Si多层膜 层间耦合 界面扩散  相似文献   

18.
刘伟  刘雄华  崔伟斌  龚文杰  张志东 《中国物理 B》2013,22(2):27104-027104
Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide(AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.  相似文献   

19.
用真空蒸镀方法制备了[Fe/Cr],[Fe/Cr/Si]和[Fe/Si]多层膜.研究了Cr层、Si层和Cr+Si层厚度变化对层间耦合和磁电阻的影响.Fe层厚为2nm,Cr层厚度变化存在耦合振荡和巨磁电阻及其振荡.磁电阻值为14.6%(4.2K).在Cr层中加入一半Si层或全部由Si层替代,振荡消失,磁电阻减小到千分之几.根据掺Si层后多层膜的电阻率变化,认为Si加入使非磁层中自由电子数减少,随之极化效应也变弱,导致振荡消失,磁电阻大为降低 关键词:  相似文献   

20.
采用基于密度泛函原理的全势线性缀加平面波方法(FLAPW),计算了超晶格Fen/Crn(n=1,3,5)的电子结构和磁性,结果表明铁磁耦合状态是基态,铁层的磁矩由于铬层的加入而有一些变化,铁层的磁矩随着n的增大而逐渐增强.铬层的磁矩的方向是正负相间变化的,相邻的铁层和铬层之间是反铁磁性耦合的,铁原子的d轨道和铬原子的d轨道在费米能附近有中等程度的杂化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号