首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

2.
We study questions of existence, uniqueness and asymptotic behaviour for the solutions of u(x, t) of the problem $$\begin{gathered} {\text{ }}u_t - \Delta u = \lambda e^u ,{\text{ }}\lambda {\text{ > 0, }}t > 0,{\text{ }}x{\text{ }}\varepsilon B, \hfill \\ (P){\text{ }}u(x,0) = u_0 (x),{\text{ }}x{\text{ }}\varepsilon B, \hfill \\ {\text{ }}u(x,t) = 0{\text{ }}on{\text{ }}\partial B \times (0,\infty ), \hfill \\ \end{gathered} $$ where B is the unit ball $\{ x\varepsilon R^N :|x|{\text{ }} \leqq {\text{ }}1\} {\text{ and }}N \geqq 3$ . Our interest is focused on the parameter λ 0=2(N?2) for which (P) admits a singular stationary solution of the form $$S(x) = - 2log|x|$$ . We study the dynamical stability or instability of S, which depends on the dimension. In particular, there exists a minimal bounded stationary solution u which is stable if $3 \leqq N \leqq 9$ , while S is unstable. For $N \geqq 10$ there is no bounded minimal solution and S is an attractor from below but not from above. In fact, solutions larger than S cannot exist in any time interval (there is instantaneous blow-up), and this happens for all dimensions.  相似文献   

3.
Theoretical considerations of piezoresistive strain gages show that the change in electrical resistivity depends on the biaxial state of strain at the surface of the specimen to which the gage is bonded. In particular, whenV is the initial voltage across the gage and ( \( \in _{11} , \in _{22} , \in _{12} \) ) is the surface-strain state at the point of attachment, the gage-voltage change ΔV is given by \(\frac{{\Delta V}}{V} = G_{11} \in _{11} + G_{22} \in _{22} + G_{12} \in _{12} \) whereG 11,G 22 andG 12 are the biaxial gage factors. Experiments were conducted on a nominally one-dimensional gage. Kulite type DLP-120-500, bonded to a standard ASTM flat tensile specimen of CR 1018 steel. For this gage, typical values were found to beG 11?26,G 22??1.4 andG 12??1.1. SinceG 22 andG 12 are less than 6 percent ofG 11, it is concluded that contributions from these two factors (called transverse and shear sensitivities) will be significant only when the gage is oriented such that \( \in _{11}<< \left( { \in _{22} , \in _{22} } \right)\) . However, in the interest of completeness and accuracy, all biaxial gage factors should be reported.  相似文献   

4.
The existence of a (unique) solution of the second-order semilinear elliptic equation $$\sum\limits_{i,j = 0}^n {a_{ij} (x)u_{x_i x_j } + f(\nabla u,u,x) = 0}$$ withx=(x 0,x 1,?,x n )?(s 0, ∞)× Ω′, for a bounded domainΩ′, together with the additional conditions $$\begin{array}{*{20}c} {u(x) = 0for(x_1 ,x_2 ,...,x_n ) \in \partial \Omega '} \\ {u(x) = \varphi (x_1 ,x_2 ,...,x_n )forx_0 = s_0 } \\ {|u(x)|globallybounded} \\ \end{array}$$ is shown to be a well-posed problem under some sign and growth restrictions off and its partial derivatives. It can be seen as an initial value problem, with initial value?, in the spaceC 0 0 $(\overline {\Omega '} )$ and satisfying the strong order-preserving property. In the case thata ij andf do not depend onx 0 or are periodic inx 0, it is shown that the corresponding dynamical system has a compact global attractor. Also, conditions onf are given under which all the solutions tend to zero asx 0 tends to infinity. Proofs are strongly based on maximum and comparison techniques.  相似文献   

5.
We find necessary and sufficient conditions for the nonlinear difference operator $\left( {\mathcal{D}x} \right)\left( t \right) = x\left( {t + 1} \right) - f\left( {x\left( t \right)} \right)$ $t \in \mathbb{R}$ , where $f:\mathbb{R} \to \mathbb{R}$ is a continuous function, to have the inverse in the space of functions bounded and continuous on $\mathbb{R}$ .  相似文献   

6.
We consider a family of linearly elastic shells with thickness 2?, clamped along their entire lateral face, all having the same middle surfaceS=φ() ?R 3, whereω ?R 2 is a bounded and connected open set with a Lipschitz-continuous boundaryγ, andφl 3 ( $\overline \omega$ ;R 3). We make an essential geometrical assumption on the middle surfaceS, which is satisfied ifγ andφ are smooth enough andS is “uniformly elliptic”, in the sense that the two principal radii of curvature are either both>0 at all points ofS, or both<0 at all points ofS. We show that, if the applied body force density isO(1) with respect to?, the fieldtu(?)=(u i(?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, one “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges inH 1(Ω)×H 1(Ω)×L 2(Ω) as?→0 to a limitu, which is independent of the transverse variable. Furthermore, the averageξ=1/2ε ?1 1 u dx 3, which belongs to the space $$V_M (\omega ) = H_0^1 (\omega ) \times H_0^1 (\omega ) \times L^2 (\omega ),$$ satisfies the (scaled) two-dimensional equations of a “membrane shell” viz., $$\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta )\gamma _{\alpha \beta } (\eta ) \sqrt \alpha dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\}\eta _i \sqrt a dy$$ for allη=(η i) εV M(ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\gamma _{\alpha \beta } (\eta ) = \frac{1}{2}\left( {\partial _{\alpha \eta \beta } + \partial _{\beta \eta \alpha } } \right) - \Gamma _{\alpha \beta }^\sigma \eta _\sigma - b_{\alpha \beta \eta 3} $$ are the components of the linearized change of metric tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_{\alpha \beta }$ are the components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “membrane shell” are therefore justified.  相似文献   

7.
This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, $$\partial_t u = \partial_{xx} u + f(x,u),$$ associated with a compactly supported initial datum. A typical nonlinearity we consider is ${f(x,u) = \mu_0 (\phi (x)) u(1-u)}$ , where??? 0 is a 1-periodic function and ${\phi}$ is a ${\mathcal{C}^1}$ increasing function that satisfies ${\lim_{x \to+\infty}\phi (x) = +\infty}$ and ${\lim_{x \to +\infty}\phi' (x) =0}$ . Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for u for large times, depending on the speed of the convergence of ${\phi}$ at infinity. If ${\phi}$ grows sufficiently slowly, then we prove that the spreading speed of u oscillates between two distinct values. If ${\phi}$ grows rapidly, then we compute explicitly a unique and well determined speed of propagation w ??, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors.  相似文献   

8.
We prove that the problem of solving $$u_t = (u^{m - 1} u_x )_x {\text{ for }} - 1< m \leqq 0$$ with initial conditionu(x, 0)=φ(x) and flux conditions at infinity \(\mathop {\lim }\limits_{x \to \infty } u^{m - 1} u_x = - f(t),\mathop {\lim }\limits_{x \to - \infty } u^{m - 1} u_x = g(t)\) , admits a unique solution \(u \in C^\infty \{ - \infty< x< \infty ,0< t< T\} \) for every φεL1(R), φ≧0, φ≡0 and every pair of nonnegative flux functionsf, g ε L loc [0, ∞) The maximal existence time is given by $$T = \sup \left\{ {t:\smallint \phi (x)dx > \int\limits_0^t {[f} (s) + g(s)]ds} \right\}$$ This mixed problem is ill posed for anym outside the above specified range.  相似文献   

9.
Remnant functions are defined, with \(\kappa = \sigma + \tau + \tfrac{1}{2}\) , by $$R_{\sigma \tau } (z) = [{{\Gamma (\sigma - [\kappa ])} \mathord{\left/ {\vphantom {{\Gamma (\sigma - [\kappa ])} {\Gamma (\sigma )}}} \right. \kern-\nulldelimiterspace} {\Gamma (\sigma )}}]\sum\limits_{r = 1}^\infty {r^{2\tau } \left[\kern-0.15em\left[ {(r^2 + z)^{\sigma - 1} } \right]\kern-0.15em\right]_\kappa }$$ where \(\left[\kern-0.15em\left[ \right]\kern-0.15em\right]_\kappa\) denotes subtraction of sufficiently many terms of the Taylor series in powers of z to yield a convergent sum; for integral σ a factor \([1 + ({z \mathord{\left/ {\vphantom {z {r^2 }}} \right. \kern-0em} {r^2 }})]\) may also enter. These functions arise in various contexts, in particular, in the calculation of uniform remainder terms for the approximation by integrals of sums with singular summands. Differential recurrence relations, Taylor expansions, and various integral representations are obtained. The full asymptotic expansions for ¦z¦→∞ with ¦arg z¦ <π are derived, and it is shown that for integral τ these converge exponentially fast.  相似文献   

10.
Three-dimensional Direct Numerical Simulations of statistically planar turbulent stratified flames at global equivalence ratios <???>?=?0.7 and <???>?=?1.0 have been carried out to analyse the statistical behaviour of the transport of co-variance of the fuel mass fraction Y F and mixture fraction ξ (i.e. $\widetilde{Y_F^{\prime\prime} \xi ^{\prime\prime}}={\overline {\rho Y_F^{\prime\prime} \xi^{\prime\prime}} } \Big/ {\overline \rho })$ for Reynolds Averaged Navier Stokes simulations where $\overline q $ , $\tilde{q} ={\overline {\rho q} } \big/ {\overline \rho }$ and $q^{\prime\prime}= q-\tilde{q}$ are Reynolds averaged, Favre mean and Favre fluctuation of a general quantity q with ρ being the gas density and the overbar suggesting a Reynolds averaging operation. It has been found that existing algebraic expressions may not capture the statistical behaviour of $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ with sufficient accuracy in low Damköhler number combustion and therefore, a transport equation for $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ may need to be solved. The statistical behaviours of $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ and the unclosed terms of its transport equation (i.e. the terms originating from turbulent transport T 1 , reaction rate T 4 and molecular dissipation $\left( {-D_2 } \right))$ have been analysed in detail. The contribution of T 1 remains important for all cases considered here. The term T 4 acts as a major contributor in <???>?=?1.0 cases, but plays a relatively less important role in <???>?=?0.7 cases, whereas the term $\left( {-D_2 } \right)$ acts mostly as a leading order sink. Through an a-priori DNS analysis, the performances of the models for T 1 , T 4 and $\left( {-D_2 } \right)$ have been addressed in detail. A model has been identified for the turbulent transport term T 1 which satisfactorily predicts the corresponding term obtained from DNS data. The models for T 4 , which were originally proposed for high Damköhler number flames, have been modified for low Damköhler combustion. Predictions of the modified models are found to be in good agreement with T 4 obtained from DNS data. It has been found that existing algebraic models for $D_2 =2\overline {\rho D\nabla Y_F^{\prime\prime} \nabla \xi^{\prime\prime}} $ (where D is the mass diffusivity) are not sufficient for low Damköhler number combustion and therefore, a transport equation may need to be solved for the cross-scalar dissipation rate $\widetilde{\varepsilon }_{Y\xi } ={\overline {\rho D\nabla Y_F^{\prime\prime} \nabla \xi^{\prime\prime}} } \big/ {\overline \rho }$ for the closure of the $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ transport equation.  相似文献   

11.
We consider as in Part I a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and?l 3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is any portion of withlength γ 0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ 0, which states that the space of inextensional displacements $$\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}$$ where $\gamma _{\alpha \beta }$ (η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder and?(γ 0) is contained in a generatrix ofS. We show that, if the applied body force density isO(? 2) with respect to?, the fieldu(?)=(u i (?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges as?→0 inH 1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts ?1 1 u dx 3, which belongs to the spaceV F (ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz., $$\frac{1}{3}\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta )\rho _{\alpha \beta } (\eta )\sqrt {a } dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\} \eta _i \sqrt {a } dy$$ for allη=(η i ) ∈V F (ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\begin{gathered} \rho _{\alpha \beta } (\eta ) = \partial _{\alpha \beta } \eta _3 - \Gamma _{\alpha \beta }^\sigma \partial _\sigma \eta _3 + b_\beta ^\sigma \left( {\partial _\alpha \eta _\sigma - \Gamma _{\alpha \sigma }^\tau \eta _\tau } \right) \hfill \\ + b_\alpha ^\sigma \left( {\partial _\beta \eta _\sigma - \Gamma _{\beta \sigma }^\tau \eta _\tau } \right) + b_\alpha ^\sigma {\text{|}}_\beta \eta _\sigma - c_{\alpha \beta } \eta _3 \hfill \\ \end{gathered} $$ are the components of the linearized change of curvature tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_\alpha ^\beta$ are the mixed components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “flexural shell” are therefore justified.  相似文献   

12.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

13.
For a domain ${\Omega \subset \mathbb{R}^{N}}$ we consider the equation $$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$ with zero Dirichlet boundary conditions and ${p\in(2, 2^*)}$ . Here ${V \geqq 0}$ and Q n are bounded functions that are positive in a region contained in ${\Omega}$ and negative outside, and such that the sets {Q n  > 0} shrink to a point ${x_0 \in \Omega}$ as ${n \to \infty}$ . We show that if u n is a nontrivial solution corresponding to Q n , then the sequence (u n ) concentrates at x 0 with respect to the H 1 and certain L q -norms. We also show that if the sets {Q n  > 0} shrink to two points and u n are ground state solutions, then they concentrate at one of these points.  相似文献   

14.
The integrability theory for the differential equations, which describe the motion of an unconstrained rigid body around a fixed point is well known. When there are constraints the theory of integrability is incomplete. The main objective of this paper is to analyze the integrability of the equations of motion of a constrained rigid body around a fixed point in a force field with potential U(γ)=U(γ 1,γ 2,γ 3). This motion subject to the constraint 〈ν,ω〉=0 with ν is a constant vector is known as the Suslov problem, and when ν=γ is the known Veselova problem, here ω=(ω 1,ω 2,ω 3) is the angular velocity and 〈?,?〉 is the inner product of $\mathbb{R}^{3}$ . We provide the following new integrable cases. (i) The Suslov’s problem is integrable under the assumption that ν is an eigenvector of the inertial tensor I and the potential is such that $$U=-\frac{1}{2I_1I_2}\bigl(I_1\mu^2_1+I_2 \mu^2_2\bigr), $$ where I 1,I 2, and I 3 are the principal moments of inertia of the body, μ 1 and μ 2 are solutions of the first-order partial differential equation $$\gamma_3 \biggl(\frac{\partial\mu_1}{\partial\gamma_2}- \frac{\partial\mu_2}{\partial \gamma_1} \biggr)- \gamma_2\frac{\partial \mu_1}{\partial\gamma_3}+\gamma_1\frac{\partial\mu_2}{\partial \gamma_3}=0. $$ (ii) The Veselova problem is integrable for the potential $$U=-\frac{\varPsi^2_1+\varPsi^2_2}{2(I_1\gamma^2_2+I_2\gamma^2_1)}, $$ where Ψ 1 and Ψ 2 are the solutions of the first-order partial differential equation where $p=\sqrt{I_{1}I_{2}I_{3} (\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}} )}$ . Also it is integrable when the potential U is a solution of the second-order partial differential equation where $\tau_{2}=I_{1}\gamma^{2}_{1}+I_{2}\gamma^{2}_{2}+I_{3}\gamma^{2}_{3}$ and $\tau_{3}=\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}}$ . Moreover, we show that these integrable cases contain as a particular case the previous known results.  相似文献   

15.
We are concerned with the regularity properties for all times of the equation $$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$ which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ?>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\) . If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\) , smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.  相似文献   

16.
In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

17.
The present note is a continuation of the author??s effort to study the existence of continuously differentiable solutions to the semi-implicit system of differential equations (1) $$f(x^{\prime}(t)) = g(t, x(t))$$ (2) $$\quad x(0) = x_0,$$ where
  • ${\quad\Omega_g \subseteq \mathbb{R} \times\mathbb{R}^n}$ is an open set containing (0, x 0) and ${g:\Omega_g \rightarrow\mathbb{R}^n}$ is a continuous function,
  • ${\quad\Omega_f \subseteq \mathbb{R}^n}$ is an open set and ${f:\Omega_f\rightarrow\mathbb{R}^n}$ is a continuous function.
  • The transformation of (1)?C(2) into a solvable explicit system of differential equations is trivial if f is locally injective around an element ${\gamma\in \Omega_f\cap f^{-1}(g(0,x_0))}$ . In this paper, we study (1)?C(2) when such a translation is not possible because of the inherent multivalued nature of f ?1.  相似文献   

    18.
    Transition to turbulence in axially symmetrical laminar pipe flows with periodic time dependence classified as pure oscillating and pulsatile (pulsating) ones is the concern of the paper. The current state of art on the transitional characteristics of pulsatile and oscillating pipe flows is introduced with a particular attention to the utilized terminology and methodology. Transition from laminar to turbulent regime is usually described by the presence of the disturbed flow with small amplitude perturbations followed by the growth of turbulent bursts. The visual treatment of velocity waveforms is therefore a preferred inspection method. The observation of turbulent bursts first in the decelerating phase and covering the whole cycle of oscillation are used to define the critical states of the start and end of transition, respectively. A correlation study referring to the available experimental data of the literature particularly at the start of transition are presented in terms of the governing periodic flow parameters. In this respect critical oscillating and time averaged Reynolds numbers at the start of transition; Re os,crit and Re ta,crit are expressed as a major function of Womersley number, $\sqrt {\omega ^\prime } $ defined as dimensionless frequency of oscillation, f. The correlation study indicates that in oscillating flows, an increase in Re os,crit with increasing magnitudes of $\sqrt {\omega ^\prime } $ is observed in the covered range of $1<\sqrt {\omega ^\prime } <72$ . The proposed equation (Eq. 7), ${\rm{Re}}_{os,crit} ={\rm{Re}}_{os,crit} \left( {\sqrt {\omega ^\prime } } \right)$ , can be utilized to estimate the critical magnitude of $\sqrt {\omega ^\prime }$ at the start of transition with an accuracy of ±12?% in the range of $\sqrt {\omega ^\prime } <41$ . However in pulsatile flows, the influence of $\sqrt {\omega ^\prime }$ on Re ta,crit seems to be different in the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ . Furthermore there is rather insufficient experimental data in pulsatile flows considering interactive influences of $\sqrt {\omega ^\prime } $ and velocity amplitude ratio, A 1. For the purpose, the measurements conducted at the start of transition of a laminar sinusoidal pulsatile pipe flow test case covering the range of 0.21<?A 1?<0.95 with $\sqrt {\omega ^\prime } <8$ are evaluated. In conformity with the literature, the start of transition corresponds to the observation of first turbulent bursts in the decelerating phase of oscillation. The measured data indicate that increase in $\sqrt {\omega ^\prime } $ is associated with an increase in Re ta,crit up to $\sqrt {\omega ^\prime } =3.85$ while a decrease in Re ta,crit is observed with an increase in $\sqrt {\omega ^\prime } $ for $\sqrt {{\omega }'} >3.85$ . Eventually updated portrait is pointing out the need for further measurements on i) the end of transition both in oscillating and pulsatile flows with the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ , and ii) the interactive influences of $\sqrt {\omega ^\prime } $ and A 1 on Re ta,crit in pulsatile flows with the range of $\sqrt {\omega ^\prime } >8$ .  相似文献   

    19.
    We show that for a fractal soil the soil-water conductivity, K, is given by $$\frac{K}{{K_\varepsilon }} = (\Theta /\varepsilon )^{2D/3 + 2/(3 - D)}$$ where $K_\varepsilon$ is the saturated conductivity, θ the water content, ? its saturated value and D is the fractal dimension obtained from reinterpreting Millington and Quirk's equation for practical values of the porosity ?, as $$D = 2 + 3\frac{{\varepsilon ^{4/3} + (1 - \varepsilon )^{2/3} - 1}}{{2\varepsilon ^{4/3} \ln ,{\text{ }}\varepsilon ^{ - 1} + (1 - \varepsilon )^{2/3} \ln (1 - \varepsilon )^{ - 1} }}$$ .  相似文献   

    20.
    Ref. [1] discussed the existence of positive solutions of quasilinear two-point boundary problems: but it restricts O相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号