首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular clip 1 remains monomeric in water and engages in host–guest recognition processes with suitable guests. We report the Ka values for 32 1? guest complexes measured by 1H NMR, UV/Vis, and fluorescence titrations. The cavity of 1 is shaped by aromatic surfaces of negative electrostatic potential and therefore displays high affinity and selectivity for planar and cationic aromatic guests that distinguishes it from CB[n] receptors that prefer aliphatic over aromatic guests. Electrostatic effects play a dominant role in the recognition process whereby ion–dipole interactions may occur between ammonium ions and the C=O groups of 1 , between the SO3? groups of 1 and pendant cationic groups on the guest, and within the cavity of 1 by cation–π interactions. Host 1 displays a high affinity toward dicationic guests with large planar aromatic surfaces (e.g. naphthalene diimide NDI+ and perylene diimide PDI+) and cationic dyes derived from acridine (e.g. methylene blue and azure A). The critical importance of cation–π interactions was ascertained by a comparison of analogous neutral and cationic guests (e.g. methylene violet vs. methylene blue; quinoline vs. N‐methylquinolinium; acridine vs. N‐methylacridinium; neutral red vs. neutral red H+) the affinities of which differ by up to 380‐fold. We demonstrate that the high affinity of 1 toward methylene blue (Ka=3.92×107 m ?1; Kd=25 nm ) allows for the selective sequestration and destaining of U87 cells stained with methylene blue.  相似文献   

2.
The specific hydrophobic effect involved in the self‐assembly of a bolaamphiphilic perylene bisimide (PBI) dye bearing oligoethylene glycol (OEG) chains has been identified. In pure water, the self‐assembly is entropically driven and enthalpically disfavored, as explored by optical spectroscopy and isothermal titration calorimetry studies. Besides strong π–π interactions between the PBI units that are primarily of enthalpic nature, the major contribution to the self‐assembly is the gain of entropy by release of confined water molecules from the hydration shell of the hydrophilic OEG moieties. Both contributions favor self‐assembly, but their countervailing thermodynamic parameters are reflected in an uncommon temperature dependence, which can be inverted upon gradual addition of an organic cosolvent that makes the π–π interaction increasingly dominant.  相似文献   

3.
The optical properties of a series of three cyclophanes comprising either identical or different perylene bisimide (PBI) chromophores were studied by UV/Vis absorption spectroscopy and their distinctive spectral features were analyzed. All the investigated cyclophanes show significantly different absorption features with respect to the corresponding constituent PBI monomers indicating strong coupling interactions between the PBI units within the cyclophanes. DFT calculations suggest a π‐stacked arrangement of the PBI units at close van der Waals distance in the cyclophanes with rotational displacement. Simulations of the absorption spectra based on time‐dependent quantum mechanics properly reproduced the experimental spectra, revealing exciton‐vibrational coupling between the chromophores both in homo‐ and heterodimer stacks. The PBI cyclophane comprising two different PBI chromophores represents the first example of a PBI heterodimer stack for which the exciton coupling has been investigated. The quantum dynamics analysis reveals that exciton coupling in heteroaggregates is indeed of similar strength as for homoaggregates.  相似文献   

4.
The cation–π interaction is a strong non‐covalent interaction that can be used to prepare high‐strength, stable supramolecular materials. However, because the molecular plane of a cation‐containing group and that of aromatic structure are usually perpendicular when forming a cation–π complex, it is difficult to exploit the cation–π interaction to prepare a 2D self‐assembly in which the molecular plane of all the building blocks are parallel. Herein, a double cation–π‐driven strategy is proposed to overcome this difficulty and have prepared 2D self‐assemblies with long‐range ordered molecular hollow hexagons. The double cation–π interaction makes the 2D self‐assemblies stable. The 2D self‐assemblies are to be an effective carrier that can eliminate metal‐nanoparticle aggregation. Such 2D assembly/palladium nanoparticle hybrids are shown to exhibit recyclability and superior catalytic activity for a model reaction.  相似文献   

5.
6.
7.
8.
Substituting N‐methylpyrrole for N‐methyindole in secondary‐amine‐catalysed Friedel–Crafts reactions leads to a curious erosion of enantioselectivity. In extreme cases, this substrate dependence can lead to an inversion in the sense of enantioinduction. Indeed, these closely similar transformations require two structurally distinct catalysts to obtain comparable selectivities. Herein a focussed molecular editing study is disclosed to illuminate the structural features responsible for this disparity, and thus identify lead catalyst structures to further exploit this selectivity reversal. Key to effective catalyst re‐engineering was delineating the non‐covalent interactions that manifest themselves in conformation. Herein we disclose preliminary validation that intermolecular aromatic (CH–π and cation–π) interactions between the incipient iminium cation and the indole ring system is key to rationalising selectivity reversal. This is absent in the N‐methylpyrrole alkylation, thus forming the basis of two competing enantio‐induction pathways. A simple L ‐valine catalyst has been developed that significantly augments this interaction.  相似文献   

9.
Two copper(I)‐based frameworks of complexes {[Cu(L)2(ClO4)]?CH3CN}( 2 ) and {[Cu(L)(ClO4)]? 2CH3CN} ( 3 ) (L = 1,3,5‐tris(4‐pyridylethynyl) benzene) were produced by reacting [Cu(MeCN)4(ClO4)] with different amounts of a ligand (L) using a hydrothermal method at temperatures of up to 130°C. The nitrogen atoms in the pyridine moieties of the ligand coordinate to the Cu(I) ion. The charge on the Cu(I) ion can be stabilized by extending the degree of conjugation in the system and by taking advantage of its highly symmetrical structure. The large degree of conjugation also supports numerous π–π interactions in the framework.  相似文献   

10.
11.
Molecular recognition continues to be an area of keen interest for supramolecular chemists. The investigated [M( L )2]2+ metallo‐ligands (M=PdII, PtII, L =2‐(1‐(pyridine‐4‐methyl)‐1 H‐1,2,3‐triazol‐4‐yl)pyridine) form a planar cationic panel with vacant pyridyl binding sites. They interact with planar neutral aromatic guests through π–π and/or metallophilic interactions. In some cases, the metallo‐ligands also interacted in the solid state with AgI either through coordination to the pendant pyridyl arms, or through metal–metal interactions, forming coordination polymers. We have therefore developed a system that reliably recognises a planar electron‐rich guest in solution and in the solid state, and shows the potential to link the resultant host–guest adducts into extended solid‐state structures. The facile synthesis and ready functionalisation of 2‐pyridyl‐1,2,3‐triazole ligands through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) “click” chemistry should allow for ready tuning of the electronic properties of adducts formed from these systems.  相似文献   

12.
Cooperative π–π interactions and H‐bonding are frequently exploited in supramolecular polymerization; however, close scrutiny of their mutual interplay has been largely unexplored. Herein, we compare the self‐assembly behavior of a series of C2‐ and C3‐symmetrical oligophenyleneethynylenes differing in their amide topology (N‐ or C‐centered). This subtle structural modification brings about drastic changes in their photophysical and supramolecular properties, highlighting the reciprocal impact of H‐bonding vs. preorganization on the evolution and final outcome of supramolecular systems.  相似文献   

13.
Electrostatic and charge‐transfer contributions to CH–π complexes can be modulated by attaching electron‐withdrawing substituents to the carbon atom. While clearly stabilizing in the gas phase, the outcome of this chemical modification in water is more difficult to predict. Herein we provide a definitive and quantitative answer to this question employing a simple strategy based on dynamic combinatorial chemistry.  相似文献   

14.
The characteristics of the concave–convex π‐π interactions are evaluated in 32 buckybowl dimers formed by corannulene, sumanene, and two substituted sumanenes (with S and CO groups), using symmetry‐adapted perturbation theory [SAPT(DFT)] and density functional theory (DFT). According to our results, the main stabilizing contribution is dispersion, followed by electrostatics. Regarding the ability of DFT methods to reproduce the results obtained with the most expensive and rigorous methods, TPSS‐D seems to be the best option overall, although its results slightly tend to underestimate the interaction energies and to overestimate the equilibrium distances. The other two tested DFT‐D methods, B97‐D2 and B3LYP‐D, supply rather reasonable results as well. M06‐2X, although it is a good option from a geometrical point of view, leads to too weak interactions, with differences with respect to the reference values amounting to about 4 kcal/mol (25% of the total interaction energy). © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Catalysis by small molecules (≤1000 Da, 10?9 m) that are capable of binding and activating substrates through attractive, noncovalent interactions has emerged as an important approach in organic and organometallic chemistry. While the canonical noncovalent interactions, including hydrogen bonding, ion pairing, and π stacking, have become mainstays of catalyst design, the cation–π interaction has been comparatively underutilized in this context since its discovery in the 1980s. However, like a hydrogen bond, the cation–π interaction exhibits a typical binding affinity of several kcal mol?1 with substantial directionality. These properties render it attractive as a design element for the development of small‐molecule catalysts, and in recent years, the catalysis community has begun to take advantage of these features, drawing inspiration from pioneering research in molecular recognition and structural biology. This Review surveys the burgeoning application of the cation–π interaction in catalysis.  相似文献   

16.
17.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

18.
19.
2‐{1‐[(Pyrazin‐2‐ylformamido)methyl]cyclohexyl}acetic acid (Pyr‐Gpn‐OH), C14H19N3O3, is an N‐protected derivative of gabapentin (Gpn). The compound crystallizes in the triclinic space group P and the molecular conformation is stabilized by intramolecular five‐ (C5) and seven‐membered (C7) hydrogen‐bonded rings. The packing of the molecules reveals intermolecular O—H...O and C—H...N hydrogen bonds, together with π–π interactions.  相似文献   

20.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号