首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ce-substituted barium ferrite with chemical composition BaCe0.05Fe11.95O19 has been prepared by the citrate sol-gel method. The phase composition of BaCe0.05Fe11.95O19 was characterized by X-ray powder diffraction analysis (XRD). The complex permittivity and complex permeability, microwave absorption properties of the resulting powder were measured by the transmission/reflection coaxial line method in the range of 8-13 GHz. The results show that the resulting powder has a minimum reflection loss value of - 37.4 dB at 12.8 GHz with a matching thickness of 3.5 mm.  相似文献   

2.
3.
The co-precipitation and solid state methods were used in the synthesis of barium hexaferrite (BaM). Phase pure BaM was obtained with 1, 2, 3, 5, 10, 15, 20 and 30 wt% cobalt oxide (Co3O4). The addition of Co2+/3+ ions to the BaM increased the permeability and magnetic loss tangent to a value of 3.5 at 5% and reduced to 1 at 30% doping. With increased Co doping, Ms was reduced from 87-58 emu/g, Mr increased from 11 to 40 emu/g with 3–5 wt% Co and 9 emu/g for 30% doping. Hc sharply increased from 540 to 2200 Oe with a reduction to 280 Oe at 10 K with increasing temperature to 300 K. Tc increased from 740 to 750 K for 30% Co doping. DTA–TGA studies of green body showed decarboxilation to occur at around 825 °C and the transformation of residual Co3O4 to Co2O3 at around 577 °C. The XRD data confirmed the Co ions substituting into Fe sites until a 10–15% doping level where the structure altered to W-type hexaferrite. The densities of the compounds varied with doping to a maximum of 4.45 g/cm3.  相似文献   

4.
5.
利用自反应淬熄法制备了一种M型钡铁氧体空心陶瓷微珠材料,在此基础上,对其表面进行超声波化学镀Ni-Co复合层,从而形成了具有核/壳/腔结构的材料;通过扫描电子显微镜、能谱仪和X射线衍射仪分析表明,该材料具有中空结构,主要物相BaFe12O19为M型钡铁氧体,经过化学镀后,在其表面形成了一层Ni-Co复合层;经过吸波性能测试,化学镀Ni-Co复合层后,在2~18 GHz范围内,当厚度为2.10 mm时,最低反射率达到了-28.62 dB,反射率小于-10 dB的带宽为3.33 GHz。关键词:M型钡铁氧体;空心陶瓷微珠;核/壳/腔结构;自反应淬熄法;超声波化学镀;吸波材料  相似文献   

6.
M-type barium hexaferrite BaFe12−x(Mn0.5Cu0.5Ti)x/2O19 (x varying from 0 to 3 in steps of 1) have been synthesized by the usual ceramic sintering method. The ferrite powders possess hexagonal shape and are well separated from one another. The powder of these ferrites were mixed with polyvinylchloride plasticizer to be converted in to a microwave absorbing composite. X-ray diffraction (XRD), scanning electron microscope (SEM), ac susceptometer, vibrating sample magnetometer, and vector network analyzer were used to analyze its structure, electromagnetic and microwave absorption properties. The results showed that, the magnetoplumbite structures for all the samples have been formed. The sample having higher magnetic susceptibility and coercivity exhibits a larger microwave absorbing ability. Also, the present investigation demonstrates that microwave absorber using BaFe12−x (Mn0.5Cu0.5Ti)x/2O19 (x=2x=2 and 3)/polyvinylchloride can be fabricated for the applications over 15 GHz, with reflection loss more than −25 dB for specific frequencies, by controlling the molar ratio of the substituted ions.  相似文献   

7.
The reactivity of hematite produced by pyrolysis of iron salts at various temperatures was assessed by surface area measurement, electron microscopy, crystal size and by reacting it with BaCO3 to form hexaferrite. The effect of heating rate, soaking temperature and time were studied. The mechanism of hexaferrite formation was investigated and the previously reported unknown X-ray diffraction pattern was explained. It has been proven that the various compounds higher in BaO than the monoferrite were formed first, but the main intermediate phase was the monoferrite.Hexaferrite prepared at lower temperature for longer periods were found to be finer than that prepared at higher temperatures for shorter periods.  相似文献   

8.
The conditions of the synthesis of carbonate-hydroxide precursors (pH of FeOOH precipitation and heat treatment regimes) were studied in terms of their effect on the fractal structure and physical-chemical properties of precursors. Phase transformations which occur during the synthesis of nanosize M-type barium hexaferrite (BHF) were studied as well.The first structural level of precursors' aggregation for mass fractals, the correlation between fractal dimension and precursors' activity during the synthesis of BHF were determined.Synthesis parameters for the precursors with the optimal fractal structure were determined. These data permit an enhancement of the filtration coefficient of the precipitates by a factor of 4-5, obtaining substantial decrease in the temperature required for synthesis of a single-phase BHF, and monodispersed plate-like nanoparticles (60 nm diameter) with the shape anisotropy and good magnetic characteristics (saturation magnetization (Ms)=68,7 emu/g and coercitivity (Hc)=5440 Oe).  相似文献   

9.
The effect of additions on the densification of previously prepared stoichiometric barium hexaferrite, during the initial and intermediate stages of sintering, as well as on the coercivity and remanence were studied. The effect of non-stoichiometry, SiO2, Al2O3, Cr2O3, TiO2, SnO2, MnO2, MgO, NiO and Bi2O3 is included.While SiO2 and Bi2O3 form liquid phases that increase the density, Al2O3, Cr2O3 and MnO2 form a limited solid solution and are generally beneficial when added in the proper amounts. At 1300 SiO2 up to 0.55% and Al2O3 up to 1% gave better magnetic properties. On the other hand addition of TiO2, MgO, NiO or SnO2 has a deleterious effect.  相似文献   

10.
The microwave characteristics of Co2+ and Ti4+ ions substituted, BaCo x Ti x Fe(12?2x)O19 (x = 0.1, 0.3, 0.5, 0.7, 0.9) ferrite have been studied as a function of thickness, frequency and substitution. The results depict reflection loss of ? 31.94 dB at 10.47 GHz in x = 0.9. The highest static electrical current is observed at lower substitution. The model accompanying microwave absorption is used to evaluate microwave absorption characteristics. The electromagnetic and static electrical characteristics are improved with the substitution of Co2+ and Ti4+ ions. The compositions for possible electromagnetic applications are also explored.  相似文献   

11.
We have investigated the correlation between structural and magnetic properties of M-type BaFe12O19 thin films (~1.4 μm) with Co-Ti (magnetic/non-magnetic) and Co-Ni(magnetic/magnetic) substitution, as BaFe12-2xCoxTixO19 and BaFe12-2xCoxNixO19 (0?≤?x?≤?1). With structural properties sensitively related to the magnetic properties, where ferro-ferri phase transition is involved, it has been found that magnetic properties can be substantially controlled by substitution concentration.  相似文献   

12.
Barium W-type hexaferrite with composition Ba0.95R0.05Mg0.5Zn0.5CoFe16O27 where R=Y, Er, Ho, Sm, Nd, Gd, and Ce ions has been prepared by the double-sintering ceramic technique. Structure of the prepared samples has been characterized by the X-ray diffraction (XRD) technique. The XRD patterns at room temperature show the presence of secondary phase with the intensity of the secondary phase increasing with increasing ionic radius of the rare earth (RE) ions. The variation of the magnetic susceptibility (χM) with temperature in the range 300–750 K at different magnetic field intensities (1280, 1733 and 2160 Oe) was studied by using Faraday's method. The results show that the Curie temperature (TC) increases regularly with increasing RE ionic radius then decreases again, after which it reaches maximum value at Sm ion of radius ≈1.04 Å. This behavior was explained on the basis of the changes in Fe3+–O–Fe3+ superexchange interaction. The effective magnetic moment μeff. of the investigated samples was discussed in view of varying the RE element as well as the magnetization of different sublattices.  相似文献   

13.
Barium hexaferrite BaFe12O19 powders have been synthesized using the modified co-precipitation method. Modification was performed via the ultrasonication of the precipitated precursors at room temperature for 1 h and the additions of the 2% KNO3, surface active agents and oxalic acid. The results revealed that single phase magnetic barium hexaferrite was formed at a low annealing temperature of 800 °C for 2 h with the Fe3+/Ba2+ molar ratio 8. The microstructure of the powders appeared as a homogeneous hexagonal platelet-like structure using 2% KNO3 as the crystal modifier. A saturation magnetization (60.4 emu/g) was achieved for the BaFe12O19 phase formed at 1000 °C for 2 h with Fe3+/Ba2+ molar ratio 8 using 5 M NaOH solution at pH 10 in the presence of 2% KNO3. Moreover, the saturation magnetization was 52.2 emu/g for the precipitated precursor at Fe3+/Ba2+ molar ratio 12 in was achieved for the precipitated precursor ultrasonicated for 1 h and then annealed at 1200 °C for 2 h. Coercivities from 956.9 to 4558 Oe were obtained at different synthesis conditions.  相似文献   

14.
The substitution of numerous cations into hexagonal ferrite has been extensively used to endow novel properties and functionalities for various applications. In the present work Gd-Tl substituted barium hexaferrites prepared by co-precipitation process, having the composition Ba0.75Cu0.25(GdxTl0.5-x)Fe11.5O19 (x = 0.0, 0.25 and 0.50). The hexaferrite formation during calcination of sample x = 0.25 was confirmed by TGA/DSC which was processed at 1000 °C for 3 h. The analysis of X-ray diffraction depicts the existence of magneto-plumbite structure with the formation of a minor secondary α–Fe2O3 phase x ≤ 0.0 and BaFe2O4 phase x ≤ 0.50. UV–Vis spectra reveal the dropping down behavior in the optical energy band gap from 2.47 eV to 1.74 eV. The grains with hexagonal platelet-like shape having size of 0.415–0.446 μm of magnetic powder nanoparticles (MPs) are observed by SEM images. The energy dispersive spectrometer (EDS) analysis was employed for presence of ferrite elements within a single particle. Hysteresis loops signifies the magnetization (Ms) and remnant magnetization (Mr) first increases up to x = 0.25 then reduces with the substitution (x) increment; contrarily, the coercivity (Hc) exhibited initially decreased with maximum content of Tl at x = 0.0 then increases at x = 0.25 after that it decreases at x = 0.50. Maximum values such as Ms (51.727 emu/g), Mr (28.061 emu/g), and Hc (4.057 kOe) are attained for x = 0.25 at room temperature. The synthesized magnetic nanoparticles are found to be suitable for microwave absorbing materials, permanent magnets, catalyst, high density recording media and optoelectronic devices.  相似文献   

15.
The effect of gamma irradiation on the features of aluminum-substituted barium hexagonal ferrite particles BaAlxFe12?xO19 with 0?≤?x?≤?3.5 has been studied. Optical absorption measurements have been performed and the results reflected a great dependence of the fundamental absorption edge on the radiation dose. It is found that the calculated optical band gap (Eg) increases due to an increase in the homogeneity with an increase in the Al content. Increasing the radiation dose up to 1?MGy induces a direct transition and consequently decreases the energy gap. This behavior is associated with the generation of excess electronic localized states. Moreover, the characteristic features of the irradiated samples have been studied using a scanning electron microscope. Also, all samples were characterized using the X-ray diffraction technique, and the values of crystal size, microstrain and dislocation density were calculated. On the other hand, the magnetic behavior of the samples was studied using a vibrating sample magnetometer technique after each radiation dose. The saturation magnetization (Ms) and the magneton number (nB) decrease with an increase in the Al3+ substitution and at the same time decrease with the radiation dose 250?kGy to 1?MGy.  相似文献   

16.
Barium hexaferrite (phase M) samples with different nanostructures were studied. Sample M1 is composed of nanocrystals of BaFe12O19 produced after milling the elemental oxides (Fe2O3 and BaCO3) and heating in air atmosphere. Two more samples were produced by milling the same oxides and a 20% excess of -Fe. The resulting powder (composed of phase M and a 20% hematite) was heat-treated in different conditions, resulting in samples MF1 (with a partially sintered structure) and MF8 (with almost completely sintered structure).

In order to have an insight into the interactions in each sample, Preisach distributions were obtained using first-order reversion curves (FORCs) measurements. The Preisach distribution corresponding to M1 is a Gaussian-shaped one, with a maximum around 4.1 kOe. The distribution of MF1 has a narrow and high peak at 5.3 kOe, a number of overlapping small peaks down to 2.6 kOe and a distinct and low-intensity peak at 2 kOe. MF8 has a Preisach distribution with a succession of equally spaced distinct peaks from 4.2 to 1.5 kOe.

The found Preisach distributions suggest that the interactions occur among nanocrystals inside conglomerates with different number of particles.  相似文献   


17.
The hysteresis of the frequency-field dependences of ferromagnetic resonance is experimentally studied in the range of the transition from a domain into a saturated state and in the reverse direction in normally magnetized epitaxial films and plates of barium hexaferrite. The experimental results are compared with local magnetic hysteresis loops.  相似文献   

18.
In the present study, hard ferromagnetic (M-type strontium hexaferrite) SrFe12O19 was co-doped by Zn and Zr for magnetic hyperthermia applications. As a result of the high concentration of single domain SrFe12O19 nanoparticles (suspended in the ferrofluid), they found a large hydrodynamic diameter, which caused a long-time Brownian relaxation under the AC magnetic field. On the other hand, increasing the Zn-Zr content (low concentration of SrFe12O19) led to a drop in anisotropy, which coincided with a short-time N´eel relaxation. All of the substituted samples with a multi-disperse state in ferrofluid exhibited an almost equal amount of the N´eel and Brownian effects. Consequently, the magnetic saturation (Ms) was considered as the dominant factor in the specific absorption rate (SAR) of the substituted samples. Transformation to the mono-disperse state was followed by the decrease of the Brownian relaxation time and hence the increase of the SAR. The interesting point in mono-disperse state was the heat generation of pure SrFe12O19 under the AC magnetic field as a result of the decrement of the Brownian relaxation time.  相似文献   

19.
The crystalline structure and magnetic properties of M-type barium ferrite doped with small amounts of MnO2 (0, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 wt%, respectively) have been investigated by means of XRD, SEM and VSM. The results show that the crystalline structures of barium ferrite are still M-type hexagonal structure and Mn ions are distributed homogeneously in both the grains and the grain boundaries. The saturation magnetization and magnetocrystalline anisotropy constants both reach the highest values when x=0.75 wt%. The displacement of Fe ions from 4f1 to 2b site is mainly responsible for the appearance of the maximum values.  相似文献   

20.
The BaFe12-xGaxO19 (x?2O3 additive in the amount of 3?wt% was applied. The features of crystal structure and unit cell parameters were refined using powder X-ray diffraction at 300?K. It is shown that with the substitution level increase the parameters of unit cell monotonically decrease. The magnetisation and susceptibility versus temperature and field for these solid solutions were investigated by the vibration magnetometry method. The concentration dependence of the main magnetic parameters is constructed. It is shown that with the substitution level increase the magnetic parameters monotonically decrease. The microwave properties of the samples including the external magnetic bias field are also investigated at 300?K. It is shown that with the increase of Ga3+ concentration from x?=?0.1 to x?=?0.6 the frequency value of natural ferromagnetic resonance (NFR) decreases in the beginning, and at further increase in concentration up to x?=?1.2 it increases again. With the increase in Ga3+ concentration, the line width of the NFR increases that indicates the increase of frequency range where there is an intensive absorption of electromagnetic radiation (EMR). At the same time, the peak amplitude of the resonant curve changes slightly. The frequency shift of NFR in the external magnetic bias field takes place more intensively for the samples with small Ga3+ concentration. It is shown the prospects of use of the Ga-substituted barium hexagonal ferrite as the material effectively absorbing the high-frequency EMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号