首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial overlap between the electromagnetic fields and the analytes is a key factor for strong light‐matter interaction leading to high sensitivity for label‐free refractive index sensing. Usually, the overlap and therefore the sensitivity are limited by either the localized near field of plasmonic antennas or the decayed resonant mode outside the cavity applied to monitor the refractive index variation. In this paper, by constructing a metal microstructure array‐dielectric‐metal (MDM) structure, a novel metamaterial absorber integrated microfluidic (MAIM) sensor is proposed and demonstrated in terahertz (THz) range, where the dielectric layer of the MDM structure is hollow and acts as the microfluidic channel. Tuning the electromagnetic parameters of metamaterial absorber, greatly confined electromagnetic fields can be obtained in the channel resulting in significantly enhanced interaction between the analytes and the THz wave. A high sensitivity of 3.5 THz/RIU is predicted. The experimental results of devices working around 1 THz agree with the simulation ones well. The proposed idea to integrate metamaterial and microfluid with a large light‐matter interaction can be extended to other frequency regions and has promising applications in matter detection and biosensing.

  相似文献   


2.
Photonic crystal resonator integrated in a microfluidic system   总被引:1,自引:0,他引:1  
We report on a novel optofluidic system consisting of a silica-based 1D photonic crystal, integrated planar waveguides, and electrically insulated fluidic channels. An array of pillars in a microfluidic channel designed for electrochromatography is used as a resonator for on-column label-free refractive index detection. The resonator was fabricated in a silicon oxynitride platform, to support electro-osmotic flow, and operated at lambda=1.55 microm. Different aqueous solutions of ethanol with refractive indices ranging from n=1.3330 to 1.3616 were pumped into the column/resonator, and the transmission spectra were recorded. Linear shifts of the resonant wavelengths yielded a maximum sensitivity of Deltalambda/Deltan=480 nm/RIU (refractive index unit), and a minimum difference of Deltan=0.007 RIU was measured.  相似文献   

3.
N Barik  P Das  A R Panda 《Pramana》1995,44(2):145-152
Magnetic moments of decuplet baryons have been calculated in a relativistic independent quark model with a phenomenological potential in equally mixed scalar-vector harmonic form. Such a model has been successful in describing wide ranging hadronic phenomena in mesonic and baryonic sectors. Using the solutions of the constituent quark orbitals with the model parameters taken from its earlier applications, the magnetic moments of decuplet baryons Δ++ and Ω have been obtained which are in good agreement with the available experimental data. However, the agreement is found to be much better when the magnetic moment ratios such as μδ++/μ p and μΩ-/μΛ are considered. Model predictions for the magnetic moments of other decuplet baryons together with the charge radii have also been calculated which may be verified in future experiments.  相似文献   

4.
Some important characteristics of magnetic particle capture in zero atmosphere are examined. The findings are discussed in terms of their relevance to mineral processing in a lunar evironment.  相似文献   

5.
We have studied the hybridization of target DNA in solution with probe DNA on magnetic beads immobilized on the channel sidewalls in a magnetic bead separator. The hybridization is carried out under a liquid flow and is diffusion limited. Two systems are compared: one with a straight microfluidic channel and one with an integrated staggered herringbone mixer. Fluorescence microscopy studies show that the hybridization is much more efficient in the system with the integrated mixer. The results, which are discussed in terms of a simple model, are relevant for any diffusion-limited reaction taking place on the surface in a microfluidic system.  相似文献   

6.
7.
Electrohydrodynamic (EHD) atomization consists in using an electric field for spraying a liquid flowing through a capillary. The applications are: mass spectrometry, colloid thrusters and more recently medicine nebulization processes. EHD atomization provides the ability to control the generated droplets size by adjusting electrospray parameters. It is however essential to manufacture the emitters into arrays because flow through a stable cone-jet mode electrospray can only be maintained at low flow rate and most applications require a high throughput. We propose a new design of a multiple electrospray system involving an innovative nozzle shape and flow restrictor system. Nozzles and microfluidic restrictor system are manufactured on the same polycarbonate sheet using the excimer laser technology and thus allowing a high compactness of this system.  相似文献   

8.
We present an optical trapping system combining individually addressable multiple laser traps with fluorescence spectroscopy. An in-line set of 64 near-IR laser diodes is used to create a line of individually addressable traps inside a microfluidic chip. This system is completed by an excitation/detection line for spectrally resolved fluorescence imaging of trapped particles. Highly parallel trapping in a constant flow (up to a few millimeters per second), fast particle handling rates (up to a few particles per second), and the possibility of recording fluorescence spectra of trapped objects lead to a performing bioanalytical platform, e.g., for highly parallel analysis and sorting.  相似文献   

9.
Magnetic separation from superparamagnetic particle suspensions   总被引:1,自引:0,他引:1  
We investigate the magnetophoretic separation of magnetic microparticles from a non-dilute flow in a microfluidic channel and their subsequent field-induced aggregation under the influence of an externally applied magnetic force. This force induces dipolar interactions between the particles that aid in their separation from the flow. Existing analytical models for dilute suspensions cannot be extended to non-dilute suspensions in which interparticle magnetic interactions play an important role. We therefore conduct a parametric investigation of the mechanics of this problem in a microcapillary flow through simulations and experimental visualization. When a magnetic field is applied, the magnetic microparticles form an aggregate on the channel wall that is influenced by the competition between the holding magnetic force and the aggregate-depleting flow shear force. Microparticle collection in the aggregate increases linearly with increasing magnetic field strength and is characterized by distinct buildup and washaway phases. The collected microparticle volume fraction in an aggregate is found to depend on a single dimensional group that depends upon characteristic system parameters.  相似文献   

10.
We present experiments and simulations of magnetic separation of magnetic beads in a microfluidic channel. The separation is obtained by microfabricated electromagnets. The results of our simulations using FEMLAB and Mathematica are compared with experimental results obtained using our own microfabricated systems.  相似文献   

11.
We present a microfluidic system with paraffin-actuated microvalves and a thermopneumatic-actuated micropump that are easily integrated on the same substrate using the same fabrication process. The fabrication process of this microfluidic system using polydimethylsiloxane (PDMS), indium tin oxide (ITO) and glass is relatively simple, and its performance is good for the application of the disposable lab-on-a-chip. A maximum pumping rate of about 2.0 μl/min was measured at a duty ratio of 5% and a frequency of 1 Hz. The flow cut-off powers for the microvalves with the channel depth of 220 μm, were 300 and 350 mW for valve seat diameters of 1.5 and 2.0 mm, respectively. The power for flow cut-off depends on the channel depth and the diameter of the valve seat in the microvalves.  相似文献   

12.
The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.  相似文献   

13.
The reaction matrices of Kahana, Lee and Scott are used to calculate magnetic moments in the Pb region. Excellent agreement with experiment is obtained if contributions from mesonic exchange currents are included.  相似文献   

14.
Breakup of non-uniform droplets in an asymmetric T junction consisting of an inlet channel and two different-size outlet channels has been investigated numerically. Also, an analytical approach in the limit of the lubrication approximation has been extended to provide some analytical relations to study the system and verify the numerical results. Parameters that are important in the performance of the system have been determined and discussed. Our results indicate that smaller droplets can be produced by increasing the capillary number. As the geometry becomes symmetric the pressure drop decreases. Our results also reveal that the breakup time and the pressure drop for this system are smaller than the previous suggested method for producing non-uniform droplets, i.e., a uniform size T junction with different-length outlet channels.  相似文献   

15.
16.
基于以前的偏滤器研究,提出了中国核聚变工程实验堆(CFETR)偏滤器靶板的概念设计。在最差工况下进行的热工水力分析和力学分析表明,应力和温度都在允许范围内,验证了该设计模型的可靠性。该概念模型和对其所做的分析可以为以后的工程设计提供参考。  相似文献   

17.
We report on the integration of microlens and microfluidic channels in fused silica glass chip using femtosecond laser micromachining. The main process includes three procedures: (1) femtosecond laser scanning for forming a hemispherical surface and a Y-shaped channel in the fused silica glass; (2) chemical etching of the sample for removal of the modified areas; and (3) oxyhydrogen (OH) flame polish for smoothening the surface of the microlens. In addition, we demonstrate that the fabricated microlens exhibits good imaging performance with a 5× magnification, showing great potential in future lab-on-a-chip applications.  相似文献   

18.
Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.  相似文献   

19.
The influence of the external magnetic field on the orientational structure and magnetic properties of the ferrocholesteric is analyzed. A soft homeotropic coupling between the magnetic particles and the cholesteric molecules is assumed. The diamagnetic anisotropy of the matrix is chosen to be positive. In this case, the dipolar and quadrupolar mechanisms of orientational interaction with the external field compete with each other. The field being applied normal to the helix. Using the continuum theory, the occurrence of magnetic-field-induced ferrocholesteric–ferronematic transition is studied. The transition field as a function of the material parameters of a ferrocholesteric is found. It is shown that rising the field strength in the ferronematic phase leads to a change in the coupling between the particles and the director from homeotropic to planar one. A study on the structure of the domain walls in ferronematic phase is undertaken.  相似文献   

20.
基于以前的偏滤器研究,提出了中国核聚变工程实验堆(CFETR)偏滤器靶板的概念设计.在最差工况下进行的热工水力分析和力学分析表明,应力和温度都在允许范围内,验证了该设计模型的可靠性.该概念模型和对其所做的分析可以为以后的工程设计提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号