首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic properties of Fe2O3 nanoparticles (average diameter ∅≅3 nm) in alumina (68% Fe2O3 in weight) have been investigated by magnetization measurements. The results indicate a superparamagnetic behavior of interacting particles, which block with decreasing temperature (the zero-field-cooled susceptibility shows a maximum at T≅145 K) with a distribution of relaxation times. A change of magnetic regime is observed below ∼60 K, due to the increasing interparticle interactions and local surface anisotropy.  相似文献   

2.
Preparation of fullerites containing cobalt and analyses of reactions based on semiempirical quantum calculations are described. The magnetic properties of thermally treated C60Co3 samples: Curie constant (C≈3500 emu K/mol Oe) temperature and field dependencies of magnetization and nonequilibrium effects of magnetization are interpreted in terms of superparamagnetic blocking model of the compound.  相似文献   

3.
4.
This paper presents a feasible protocol for the preparation of a novel versatile nanocomposite possessing superparamagnetism via a layer-by-layer method. We combined (3-aminopropyl)triethoxysilane-coated magnetic Fe3O4 nanoparticles (APTES-MNPs) with β-cyclodextrin (β-CD). The following unusual features were integrated in a single nano-system: (a) the silane coating outside the magnetic Fe3O4 cores derived from the hydrolysis of APTES acted as a coupling agent and provided amino group (–NH2) for linking the CD molecule; (b) the outermost CD moieties can function as inclusion sites and specific containers for drugs and biomolecules; (c) the innermost magnetic cores were able to sense and respond to an externally applied magnetic field and their behaviors in vivo or in vitro can be artificially manipulated and navigated. The obtained nanocomposite turned out to be superparamagnetic with a relatively high saturation magnetization value of 69 emu g?1, which implies potentially promising applications in magnetic drug delivery technology and bioseparation.  相似文献   

5.
Perovskite and spinels oxides have received renewed attention due to the possibility of combining both structures in di-phase composites to obtain multifunctional materials. In this work, barium titanate (perovskite)-cobalt ferrite (spinel) composite powders with different microstructures were obtained from thermal treatment of amorphous precursors at 500–1100 °C. The precursors were prepared by combining coprecipitation and sol–gel routes. Lyophilization of ferrite prior to mixing was used as a strategy to control interphase reaction. Mössbauer spectroscopy showed that the dispersion of coprecipitated ferrite in a viscous BaTiO3 precursor gel resulted in superparamagnetic behavior and reduction of the local magnetic field of site [B].  相似文献   

6.
The magnetic properties of 53 aluminium-rich intermetallic compounds R6T4Al43 with R=rare-earth elements and T=Ti, V, Nb, Ta, Cr, Mo, W were investigated using polycrystalline samples and a SQUID magnetometer in the temperature range from 2 to 300 K with magnetic flux densities up to 5.5 T. The yttrium and lutetium compounds are Pauli paramagnetic, indicating that the transition metal atoms do not carry magnetic moments. The samarium compounds show van Vleck behavior and antiferromagnetic order with Néel temperatures of less than 12 K. Of these Sm6Ti4Al43 becomes metamagnetic. The ytterbium compounds show a mixed or intermediate valent behavior and no magnetic order down to 2 K. All other compounds obey the Curie–Weiss law above 30 K. Their effective magnetic moments correspond to the theoretical moments of the rare-earth ions. They show ferromagnetic or metamagnetic behavior with ordering temperatures all below 20 K. The magnetization curves of most compounds (recorded up to 5.5 T) reach about 50% of the theoretical magnetization already at 0.5 T. The gadolinium compounds are exceptional in that they reach at 0.5 T only about 10% of their theoretical magnetization. The crystal structures of the isotypic compounds Yb6V4Al43 and Yb6Ta4Al43 were refined from single-crystal X-ray data.  相似文献   

7.
Gd-substituted Mn–Zn ferrite nanoparticles of different compositions were synthesized by chemical co-precipitation method. To study the reduction of the Curie temperature (TC) for different samples, their magnetic properties in dependence from the composition and cationic distribution were investigated. An attempt to lower the TC of superparamagnetic particles to the optimal temperature required in magnetic fluid hyperthermia (44–47 °C) was made.  相似文献   

8.
Thin superconducting films of CeCoIn5 were prepared in situ by simultaneous thermal evaporation of indium and dc magnetic field assisted sputtering of planar metallic Ce and Co targets. To achieve an effective sputtering of the magnetic Co target a special geometry with two facing planar targets (Ce and Co) and magnetic field perpendicular to the targets was used. The stoichiometric (0 0 1)-oriented CeCoIn5 films were grown on r-cut sapphire substrates with a high-rate of 100 nm/min. The temperature dependence of the electrical resistivity revealed the characteristic heavy-fermion behavior and a superconducting transition at about 2 K in agreement with the literature data for CeCoIn5 bulk material and thin films.  相似文献   

9.
In this paper, we reported a method to prepare monodisperse magnetite nanoparticles at mild temperature using cheap and non-toxic precursors. It overcomes the shortages of chemical co-precipitation method and thermal decomposition method and combines the advantages of facile, cheap, large-scale, monodisperse, nanosize, and low synthesis temperature and low toxic. In this method, FeCl3 · 6H2O, FeCl2 · 4H2O and sodium oleate were mixed in toluene/ethanol/water mixture solvent and refluxed at 74 °C to prepare magnetite nanoparticles directly. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer and thermogravimetric analysis. The magnetic properties of nanoparticles were measured by superconducting quantum interference device. The results showed that the nanoparticles are well-monodisperse with about 4–5 nm of average diameter. The nanoparticles were proved to be superparamagnetic with saturated magnetization 23.6 emu/g and blocking temperature 24.4 K. A possible formation mechanism of monodisperse magnetite nanoparticles was presented at the same time.  相似文献   

10.
The magnetic properties of Lu2Fe17 single crystal have been studied by means of magnetization, susceptibility and magnetostriction measurements. The unusual magnetic behavior with two magnetic phase transitions has been observed in magnetic fields up to 50 Oe. The magnetostriction of the Lu2Fe17 compound has the maximum at temperature T≈285 K at which the paraprocess makes the main contribution to the magnetization.  相似文献   

11.
Magnetocaloric properties of HoFeO3 single crystal are investigated along the direction [100]. Magnetic field dependent magnetization isotherms at different temperatures undergo a metamagnetic transition, entropy change as large as 19.2 J/kg K and 15.8 J/kg K are obtained at 7 T in the vicinity of antiferromagnetic ordering temperature of Ho3+ and the metamagnetic transition, respectively. The coupling of Ho and Fe spins generates the compensation behavior at 6.5 K, separating the two large magnetic entropy change. Its refrigeration capacity (RC) value, as high as 220 J/kg, is appreciable and can be considered as a promising magnetic refrigerant. New evidence for spin reorientation of Fe3+ in HoFeO3 is also provided by the change of magnetic entropy.  相似文献   

12.
The magnetic hyperfine interaction for 119Sn impurity atoms in GdAl3 frustrated antiferromagnetic compound has been investigated by Mössbauer spectroscopy technique. Two magnetic subspectra with the ratio of the intensities 2:1 were observed. At 4.5 K, the values of the magnetic hyperfine field are 4.00(2) and 1.35(2) T. The peculiarities of the Mössbauer spectrum provide an opportunity to propose a plausible model of the spin arrangement in the GdAl3 lattice. In each GdAl3 basal layer, the magnetic moments of the Gd atoms form three-sublattice 120° spin structure that is peculiar to magnetically frustrated compounds. The appearance of two magnetically nonequivalent Sn sites is a result of vector summation of the transferred polarizations from Gd moments located in two adjacent GdAl3 planes. The anomalous temperature behavior of the hyperfine field is characteristic of frustrated systems with competing exchange interactions.  相似文献   

13.
Fe2O3–Al2O3 nano-composites were synthesized by sol–gel means. The properties of samples sintered at various thermal treatment temperatures were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The experimental results show that the γ- to α-Al2O3 transformation occurs at lower temperature after iron oxide doping. The samples obtained at 1173 K contained poorly crystallized γ-Al2O3 phase and an amorphous iron oxide. When the temperature of heating was increased to 1373 K, the sample was composed of α-Fe2O3/α-Al2O3 nano-composite and some solid solution. A superparamagnetic phenomenon was observed until the thermal treatment temperature reached 1373 K.  相似文献   

14.
Carbon nanotubes (CNTs)-based magnetic nanocomposites can find numerous applications in nanotechnology, integrated functional system, and in medicine owing to their great potentialities. Herein, densely distributed magnetic Fe3O4 nanoparticles were successfully attached onto the convex surfaces of carbon nanotubes (CNTs) by an in situ polyol-medium solvothermal method via non-covalent functionalization of CNTs with cationic surfactant, cetyltrimethylammonium bromide (CTAB), and anionic polyelectrolyte, poly(sodium 4-styrenesulfonate) (PSS), through the polymer-wrapping technique, in which the negatively charged PSS-grafted CNTs can be used as primer for efficiently adsorption of positively metal ions on the basis of electrostatic attraction. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis have been used to study the formation of Fe3O4/CNTs. The Fe3O4/CNTs nanocomposites were proved to be superparamagnetic with saturation magnetization of 43.5 emu g?1. A mechanism scheme was proposed to illustrate the formation process of the magnetic nanocomposites.  相似文献   

15.
We review neutron scattering investigations of the crystal structures, magnetic structures, and spin dynamics of the iron-based RFe(As, P)(O, F) (R = La, Ce, Pr, Nd), (Ba,Sr,Ca)Fe2As2, and Fe1+x(Te–Se) systems. On cooling from room temperature all the undoped materials exhibit universal behavior, where a tetragonal-to-orthorhombic/monoclinic structural transition occurs, below which the systems become antiferromagnets. For the first two classes of materials the magnetic structure within the ab plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a very energetic spin wave bandwidth ~0.2 eV. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity, with superconducting transition temperatures up to ≈55 K. Magnetic correlations are observed in the superconducting regime, with a magnetic resonance that follows the superconducting order parameter just like the cuprates. The rare earth moments order antiferromagnetically at low T like ‘conventional’ magnetic superconductors, while the Ce crystal field linewidths are affected when superconductivity sets in. The application of pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a ‘collapsed’ non-magnetic tetragonal system. Tetragonal Fe1+xTe transforms to a low T monoclinic structure at small x that changes to orthorhombic at larger x, which is accompanied by a crossover from commensurate to incommensurate magnetic order. Se doping suppresses the magnetic order, while incommensurate magnetic correlations are observed in the superconducting regime.  相似文献   

16.
《Current Applied Physics》2010,10(3):771-775
Zn1−xCrxTe (x = 0.05, 0.15) films were grown on GaAs(1 0 0) substrate by thermal evaporation method. X-ray diffraction analysis showed the presence of ZnCrTe phase without any secondary phase. The surface was analyzed by high resolution magnetic force microscope and profile measurements showed orientation of magnetic domains in the range of 0.5–2 nm with increase of Cr content. Magnetic moment–magnetic field measurements showed a characteristic hysteresis loop even at room temperature. The Curie temperature was estimated to be greater than 300 K. From the electron spin resonance spectra, the valence state of Cr in ZnTe was found to be +2 with d2 electronic configuration. Hall effect study was done at room temperature and the result showed the presence of p-type charge carriers and hole concentration was found to increase from 5.95 × 1012 to 6.7 × 1012 m−3 when Cr content increases. We deduce the origin of ferromagnetic behavior based on the observed experimental results.  相似文献   

17.
Single-domain nanoscale magnetic iron particles have been embedded uniformly in an amorphous matrix of alumina using a pulsed laser deposition technique. Structural characterization by transmission electron microscopy (TEM) reveals the presence of a crystalline iron and an amorphous alumina phase. Fine particle magnetism have been investigated by carrying out field and temperature dependence of magnetization measurements using superconducting quantum interference device magnetometer. The particle size of Fe in Al2O3 matrices prepared by changing the deposition time of Fe, have been found to be 9, 7 and 5 nm from TEM studies. At 10 K, the coercivities of these samples are found be 450, 350 and 150 Oe, respectively. At 300 K, the coercivity of Fe–Al2O3 sample decreases from 100 to 50 Oe as the particle size decreases from 9 to 7 nm and finally the sample turns superparamagnetic when the Fe particle size becomes around 5 nm. Based on the calculated value of blocking temperature, TB, (481 K), magnetic anisotropy K (4.8×105 erg/cm3) for Fe, and the Boltzmann constant kB (1.38×10−16 erg/K) from TB=KV/25kB, the mean radius of Fe particles is found to be 9.3 nm. in one of the samples. This is in good agreement with the particle size measured using TEM studies.  相似文献   

18.
Magnetization of La0.66Ba0.34MnO3 and its temperature behavior under a uniaxial pressure of 0.1 kbar are measured between 5 and 270 K in magnetic fields 0<H<120 Oe. The magnetization represents nearly linear dependence on an external magnetic field. Temperature dependence of the magnetic susceptibility found represents a plateau, that is considered as an evidence of the formation of a long period magnetic structure (probably a sort of helix) below the Curie point. Pressure derivative of magnetization displays a sharp minimum at 200 K, pointing to an instability of electronic structure of the compound near this temperature.  相似文献   

19.
Nanostructured nickel ferrites (NiFe2O4) were prepared by doping with Ti4+ ions using solid-state reaction route. Lowest grain size of 55 nm was achieved in the specimens with 20 mole% TiO2 doping. Magnetization in the specimens decreases with decreasing grain sizes. Lower volume fractions of ferrite phase due to dissociation of the magnetic phase into smaller particles by the disruption of super exchange interaction by the titanium substitution results a decrease in magnetizations. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behavior of magnetic nanoparticles. Small polaron hopping conduction between Fe2+ and Fe3+ sites controls the dc electrical properties of the specimens. The presence of an interfacial amorphous phase between the sites is evident from Mott's analysis. Specimens containing 10 mole or more TiO2 and sintered at 1350 °C contain NiTiO3 as a secondary phase and show unusual dc conductivity.  相似文献   

20.
Sn1?xMnxO2 (x  0.11) thin films were fabricated by sol–gel and spin-coated method on Si (1 1 1) substrate. X-ray diffraction revealed that single-phase rutile polycrystalline structure was obtained for x up to about 0.078. Evolution of the lattice parameters and X-ray photoelectron spectroscopy studies confirmed the incorporation of Mn3+ cations into rutile SnO2 lattice. Optical transmission studies show that the band gap energy (Eg) broadens with the increasing of Mn content. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism (RTFM), which is identified as an intrinsic characteristic. Interestingly, the magnetic moment per Mn atom decreases with the increasing Mn content. The origin of RTFM can be interpreted in terms of the bound magnetic polaron model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号