首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of mixed metal complexes between uranium (VI), as the central metal ion, and aluminium (III), indium (III), copper (II), zinc (II) and cadmium (II), as the additional metal ions, with a hydroxycarboxylic acid chosen between citric, tartaric or malic, has been studied using spectrophotometric methods.The effect of pH has been examined, and the results show that at pH=4 stable complexes are formed for most of the systems. At this pH the method of mole ratio and Job's method of continuous variations, were employed to determine the stoichiometry of the mixed metal complexes. Al(III), In(III) and Cu(II) showed a high tendency to form mixed metal complexes with U(VI), while the formation of complexes is uncertain for Cd(II) and Zn(II). The ratio of the ligand to the total metal ion has been found to be 21 and metal:metal ratios of 11 and 12 have been observed.Represents part of the Ph.D. thesis submitted by Emanuel Manzurola to Ben Gurion University of the Negev.  相似文献   

2.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

3.
The extraction properties of Ag(I), Cd(II), In(III), Sn(II), Sn(IV), Sb(III), and U(VI) from aqueous KI/H2SO4 solution into a mixture of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK) and cyclohexanone (CHO) were studied. Both single-step batch and SISAK2 methods were used. The oxidation of Sn(II) to Sn(IV) by iodine and complexation of Sn(IV) by 2,3-dimercapto-propanol-1 (BAL) were also investigated. A method for rapid and continuous separation of indium from tin was developed for investigation of short-lived indium fission products.  相似文献   

4.
A rapid procedure is described for the separation and determination of 0.025 mg to 1.0 mg quantities of As(V), V(V), Mo(VI) and W(VI) from small quantities of Cu(II), Ni(II), and Zn(II) using silica gel as the selective sorbent for the cations. The individual anionic components, which remain in the supernatant solution after separation from the cations, are determined by colorimetric methods. The complete recovery of As(V) in supernatant solution has also been tested radiometrically using76As as the radioactive indicator. The sorbed cations after extraction with dilute hydrochloric acid are determined by EDTA titrations.  相似文献   

5.
《Analytical letters》2012,45(4):233-241
Abstract

An experimental investigation is presented of the foam separation of the oxyanions of Re(VII), Mo(VI), Cr(VI), W(VI), and V(V). The pH 6.0, multicomponent aqueous solutions are 1.0 × 10 ?6 M in each metal. The effect of chloride competition with the metal oxyanions for the cationic surfactant is determined with NaCl concentrations up to 0.3 M. With proper NaCl concentration adjustments, V(V) can be separated completely from the other four metals, and Re(VII) and Mo(VI) from the other three. Pulsed surfactant dosage is investigated for 1.0 × 10 ?6 M Mo(VI) solutions at pH 6.0 and 3.1.  相似文献   

6.
Solvent extraction of macro amounts of Mo(V) and Mo(VI) from HCl using Aliquat 336 in chloroform was performed for the electrochemistry of Sg. The extraction reaction attained equilibrium with a shaking time of 10 s in higher than 8 M HCl. The D values of Mo(V) obtained by the electrochemical reduction of Mo(VI) were in good agreement with those obtained by the extraction of MoCl5, and the D values of Mo(V) were higher than those of Mo(VI). These results suggested that the reduction behavior of Sg might be studied by electrochemical reduction combined with the present solvent extraction.  相似文献   

7.
The extraction order of Th(IV), U(VI) and Mo(VI) based on pH0.5 values is Mo(VI)>U(VI)>Th(IV). Quantitative extraction has been observed for U(VI) by mixture of 10% (v/v) LIX 84 and 0.1M dibenzoylmethane at pH 4.2 and by mixture of 10% LIX 84 and 0.05M HTTA in the pH range 5.5–7.3 and for Mo(VI) by 10% LIX 84 from chloride media at pH 1.5. The order of extraction of Mo(VI) from 1N acid solutions is HCl>H2SO4>HNO3>HClO4 and extraction decreases very rapidly with increase in the concentration of HCl as compared to that from H2SO4, HNO3 and HClO4 acid solutions. The diluents C6H6, CCl4 and CHCl2 are found to be superior ton-butyl alcohol and isoamyl alcohol for extraction of Mo(VI). Influence of concentration of different anions on the extraction of U(VI) and Mo(VI) has been studied. Very little extraction has been observed in case of Th(IV) by LIX 84 or its mixtures with other chelating extractants or neutral donors.  相似文献   

8.
Studies have shown that plots of the log of the distribution ratio versus pH for the distribution of uranium(VI) between non-plasticized and TBP-plasticized dibenzoylmethane-loaded polyurethane foams and dilute aqueous uranium(VI) solutions have a limiting slope of 0.6 at equilibrium pH values 4 and reach a maximum distribution constant at about pH 6.0. The results indicate that the extracted complex is a simple chelate, UO2Me2, where HMe denotes dibenzoylmethane. Plasticization of the foam with TBP has been found to significantly enhance the rate of extraction.  相似文献   

9.
Quantitative extraction of uranium(VI) is observed from 0.2M HCl by 5% (v/v) Cyanex 301. The extraction decreases with increasing acid concentration. Mixtures of Cyanex 301 with tri-n-butyl phosphate (TBP), didecyl sulfoxide (DDSO) and Alamine 308 result in significant synergism in the extraction process, where a species of the type UO2R2. L is proposed to be extracted [RH=Cyanex 301 and L=TBP, DDSO or Alamine 308]. Significant extraction of uranium(VI) by 5% (v/v) Alamine 308 is observed at and above 2M HCl, which increases with further increase in acidity attaining a maximum at 6M, after which a slight decrease in extration is observed. Mixtures of Alamine 308 with TBP or DDSO result in a synergism, where a species of the type (R 3 NH)2 UO2Cl4. Lis extracted. [R 3 N=Alamine 308, L=TBP or DDSO]. Mixtures of Alamine 308 and Cyanex 301 at 2M HCl result in a profound antagonism in the extraction of uranium(VI).  相似文献   

10.
The extraction of U(VI), Eu and Am by the aromatic main component (HA) of LIX 64N dissolved in toluene was studied at pH 3–9. The values of pH1/2 for the extraction with 0.146 M HA are 4.0, 5.5 and 5.2, and the pH's of maximum extraction are 6.0, 6.8, and 7.0 for U(VI), Eu and Am, respectively. The stoichiometry of the extracted chelates determined by the slope analysis is UO2A2 and MA3–nYn (n=1,2) for Eu and Am, the ligand Y being probably the nitrate anion. The addition of tri-n-octylphosphine oxide (TOPO) enhances the extraction of U(VI) and especially of Eu at pH<6. An Eu chelate species solvated by 2 TOPO molecules is extracted at pH 4 by the mixture of HA+TOPO, whereas the species extracted at pH 6.5 is not solvated by TOPO.  相似文献   

11.

The influence of titanim(IV) and silicon(IV) on the extraction of phosphorus(V), molybdenum (VI), and tungsten(VI) fluoride complexes by tributyl phosphate was studied.

  相似文献   

12.
A comprehensive thermodynamic model, referred to as the Mixed-Solvent Electrolyte model, has been applied to calculate phase equilibria and chemical speciation in selected aqueous actinide systems. The solution chemistry of U(IV, VI), Np(IV, V, VI), Pu(III, IV, V, VI), Am(III), and Cm(III) has been analyzed to develop the parameters of the model. These parameters include the standard-state thermochemical properties of aqueous and solid actinide species as well as the ion interaction parameters that reflect the solution’s nonideality. The model reproduces the solubility behavior and accurately predicts the formation of competing solid phases as a function of pH (from 0 to 14 and higher), temperature (up to 573 K), partial pressure of CO2 (up to \( p_{{{\text{CO}}_{2} }} \)  = 1 bar), and concentrations of acids (to 127 mol·kg?1), bases (to 18 mol·kg?1), carbonates (to 6 mol·kg?1) and other ionic components (i.e., Na+, Ca2+, Mg2+, OH?, Cl?, \( {\text{ClO}}_{4}^{ - } \), and \( {\text{NO}}_{3}^{ - } \)). Redox effects on solubility and speciation have been incorporated into the model, as exemplified by the reductive and oxidative dissolution of Np(VI) and Pu(IV) solids, respectively. Thus, the model can be used to elucidate the phase and chemical equilibria for radionuclides in natural aquatic systems or in nuclear waste repository environments as a function of environmental conditions. Additionally, the model has been applied to systems relevant to nuclear fuel processing, in which nitric acid and nitrate salts of plutonium and uranium are present at high concentrations. The model reproduces speciation and solubility in the U(VI) + HNO3 + H2O and Pu(IV, VI) + HNO3 + H2O systems up to very high nitric acid concentrations (\( x_{{{\text{HNO}}_{3} }} \approx 0.70 \)). Furthermore, the similarities and differences in the solubility behavior of the actinides have been analyzed in terms of aqueous speciation.  相似文献   

13.
Summary Thin-layer chromatography of Se(IV), Te(IV), V(V), and Mo(VI) as ternary mixtures has been described. The separation was effected on a silica gel G layer by employing two different solvent systems: diethyl oxalate-HCl (601v/v) andn-butyl acetate-HCl (400.6v/v). The chromatograms were visualized with 0.1M potassium thiocarbonate (PTC) spray and the limits of identification as determined, lie between 1.27 and 2.04g.
Zusammenfassung Die Dünnschichtchromatographie ternärer Gemische von Se(IV), Te(IV), V(V) und Mo(VI) wurde beschrieben. Die Trennung wurde auf Schichten von Kieselgel G mit zwei verschiedenen Lösungsmittelsystemen durchgeführt: Diäthyloxalat—Salzsäure (601) und n-Butylacetat—Salzsäure (400,6). Die Chromatogramme wurden mit 0,1-m Kaliumthiocarbonat gesprüht. Die Nachweisgrenze liegt zwischen 1,27 und 2,04g.
  相似文献   

14.
A new and simple method for selective spectrophotometric determination of uranium(VI) with 4-(2-pyridylazo)resorcinol (PAR) and N-octylacetamide into benzene over pH 7.0–9.0 is described. The molar absorptivity of the complex with 9 different amides is in the range of (0.40–3.2)·104 1·mol–1·cm–1 at the absorption maximum. Out of these, the most sensitive compound N-octylacetamide (OAA) was chosen for detailed studies in the present investigation. The detection limit of the method is 0.008 g U·ml–1. The system obeys Beer's law in the range of 0–5 g U·ml–1. The method is free from interferences of most of the common metal ions except vanadium(V) and copper(II), which are masked by proper masking agents. The composition of the complex is determined by curve-fitting method. The method has been applied for the recovery of the metal from rock samples and synthetic mixtures.  相似文献   

15.
Summary A study has been made of the kinetics of catalytic oxidation of Azorubin S by hydrogen peroxide in the presence of Mn(II), Mo(VI) and W(VI) in order to find optimal conditions for the kinetic catalytic determination of these elements. Manganese(II), molybdenum(VI) and tungsten(VI) were determined in the concentration ranges 5.5–33.0×10–3, 1.3–8.1 and 5.9–44.1g/ml, respectively. Standard deviations were less than 11%. The effect of some foreign ions on these determinations was also investigated.
Zusammenfassung Die Kinetik der katalytischen Oxydation von Azorubin S mit Wasserstoffperoxid in Anwesenheit von Mn(II), Mo(VI) und W(VI) wurde untersucht, um die optimalen Bedingungen für deren kinetisch-katalytische Bestimmung zu finden. Mn(II) wurde im Konzentrationsbereich von 5,5–33,0×10–3, Mo(VI) von 1,3–8,1 und W(VI) von 5,9–44,1g/ml mit Standardabweichungen <11% bestimmt. Außerdem wurden einige der möglichen Störungen untersucht.


This work was presented in part at the 20th Annual Meeting of the Serbian Chemical Society, Belgrade, January 17, 1977.  相似文献   

16.
The solution conditions and other parameters affecting the ammonium pyrrolidine-dithiocarbamate—methyl isobutyl ketone extraction system for graphite-furnace atomic absorption spectrometric determination of As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI) were studied in detail. The solution conditions for the single or simultaneous extraction of As(III), Sb(III) and Se(IV) were not critical. Arsenic(V) and Se(VI) were not extracted over the entire range of pH and acidity studied. Antimony(V) was extracted only in the acidity range 0.3—1.0 M HCl. Simultaneous extraction of total arsenic and total antimony was possible after reduction of As(V) with thiosulphate. Interference studies are also reported.  相似文献   

17.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 g/l for Cr(VI) and 5 g/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

18.
Summary A rigorous analysis of the effect of various concentrations (0.02–1.60M) of ammonium acetate on the distribution coefficients (K) of a number of metal ions using cation exchanger Dowex 50W-X8 (100–200 mesh NH4 +-form) has been made. On account of the low affinity of U(VI) for resin in 0.20M NH4OAc it can be separated from all other metal ions. HighK values of Sr(II), Ba(II) and Hg(II) at higher 0.50M NH4OAc are responsible for their separation from others. The abnormal column Chromatographic behaviour of Al(III) permits its separation from other metal ions including U(VI), Sr(II), Ba(II), Hg(II). A number of binary and ternary separations have been achieved.  相似文献   

19.
This paper reports the separation and determination of Nb(V), V(V), Co(II), Fe(III), Ni(II), Ru(III) and Pd(II) by reversed-phase HPLC using the new reagent, 4-(5-nitro-2-pyridylazo) resorcinol (5-NO2-PAR) as a precolumn derivatization reagent. On a C18 column, the seven metal chelates can be separated quantitatively with methanol/water (5248, v/v) containing 15 mmol/l pH 5.0 acetate buffer and 10 mmol/l tetrabutylammonium bromide (TBA·Br). The detection limits for Nb(V), V(V), Co(II), Fe(III), Ni(II), Ru(III) and Pd(II) are 0.65 ppb, 0.94 ppb, 0.10 ppb, 0.15 ppb, 0.18 ppb, 3.02 ppb and 2.35 ppb, respectively when the ratio of signal to noise (S/N) is 3. This method is simple and rapid, and has been used in the analysis of rain and liquor with satisfactory results.  相似文献   

20.
Three bacterial isolates, GT2, GT3, and GT7, were isolated from the sludge and water of a circulating cooling system of iron and steel plant by screening on Cr(VI)-containing plates. Three isolates were characterized as the members of the genus Pseudomonas on the basis of phenotypic characteristics and 16S rRNA sequence analysis. All isolates were capable of resisting multiple antibiotics and heavy metals. GT7 was most resistant to Cr(VI), with a minimum inhibitory concentration (MIC) of 6.5 mmol L?1. GT7 displayed varied rates of Cr(VI) reduction in M2 broth, which was dependent on pH, initial Cr(VI) concentration, and inoculating dose. Total chromium analysis revealed that GT7 could remove a part of chromium from the media, and the maximum rate of chromium removal was up to 40.8 %. The Cr(VI) reductase activity of GT7 was mainly associated with the soluble fraction of cell-free extracts and reached optimum at pH 6.0~8.0. The reductase activity was apparently enhanced by external electron donors and Cu(II), whereas it was seriously inhibited by Hg(II), Cd(II), and Zn(II). The reductase showed a K m of 74 μmol L?1 of Cr(VI) and a V max of 0.86 μmol of Cr(VI) min?1 mg?1 of protein. The results suggested that GT7 could be a promising candidate for in situ bioremediation of Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号