首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles surface-coated with thyminethiol derivatives containing long hydrocarbon chains have been prepared. The diameter of the particles is 2.2 and 7.0 nm, respectively, with a relatively narrow size distribution. Thyminethiol derivatives are attached to the gold particle surfaces with thymine moieties as the end groups. The colloid stability of the gold nanoparticles as a function of the type and concentration of monovalent salt, pH, and particle size was investigated in alkaline, aqueous solutions. The gold particles are stable in concentrated NaCl and KCl solutions, but are unstable in concentrated LiCl and CsCl solutions. The larger gold particles are more sensitive to salt concentration and aggregate at lower salt concentrations. The reversible aggregation and dispersion of the gold particles can be controlled by changing the solution pH. The larger gold particles can be dispersed at higher pH and aggregate faster than the smaller particles, due to stronger van der Waals forces between the larger particles. Hydration forces play an important role in stabilizing the particles under conditions where electrostatic forces are negligible. The coagulation of the gold nanoparticles is attributed to van der Waals attraction and reduced hydration repulsion in the presence of LiCl and CsCl.  相似文献   

2.
We newly synthesized various sized gold nanoparticles covered with photochromic polymers consisting of diarylethenes with various structures to investigate an effect of the gold nanoparticles on the photocycloreversion reaction of the diarylethene chromophores upon irradiation with visible light. The gold nanoparticles covered with the photochromic polymers exhibited reversible changes in localized surface plasmon resonance (LSPR) absorption along with the photochromic reaction depending on the diameter of the particle, the distance between the gold surface and the chromophore, and the structure of the diarylethene chromophore. The rate of the photocycloreversion reaction of the chromophores around the particle was enhanced by the gold nanoparticles and the degree of the enhancement was affected by the diameter of the particle and the distance from the gold surface, while a structural difference in the diarylethene chromophore had no effect on the degree of the enhancement. The larger enhancement of the photocycloreversion reaction was observed by irradiation at longer wavelength side than visible light corresponding to the LSPR frequency.  相似文献   

3.
The potential ability of atomic force microscopy (AFM) as a quantitative bioanalysis tool is demonstrated by using gold nanoparticles as a size enhancer in a DNA hybridization reaction. Two sets of probe DNA were functionalized on gold nanoparticles and sandwich hybridization occurred between two probe DNAs and target DNA, resulting in aggregation of the nanoparticles. At high concentrations of target DNA in the range from 100 nM to 10 μM, the aggregation of gold nanoparticles was determined by monitoring the color change with UV-vis spectroscopy. The absorption spectra broadened after the exposure of DNA–gold nanoparticles to target DNA and a new absorption band at wavelengths >600 nm was observed. However, no differences were observed in the absorption spectra of the gold nanoparticles at low concentrations of target DNA (10 pM to 10 nM) due to insufficient aggregation. AFM was used as a biosensing tool over this range of target DNA concentrations in order to monitor the aggregation of gold nanoparticles and to quantify the concentration of target DNA. Based on the AFM images, we successfully evaluated particle number and size at low concentrations of target DNA. The calibration curve obtained when mean particle aggregate diameter was plotted against concentration of target DNA showed good linearity over the range 10 pM to 10 nM, the working range for quantitative target DNA analysis. This AFM-based DNA detection technique was three orders of magnitude more sensitive than a DNA detection method based on UV-vis spectroscopy.  相似文献   

4.
Poly(N-isopropylacrylamide) (PNIPAM) with a narrow molecular weight distribution was prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. A dithioester group at the chain end of PNIPAM thus prepared was cleaved by treating with 2-ethanolamine to provide thiol-terminated PNIPAM with which gold nanoparticles were coated via reactions of the terminal thiol with gold. The thermoresponsive nature of the maximum wavelength of the surface plasmon band and hydrodynamic radius (Rh) for the PNIPAM-coated gold nanoparticles were found to be sensitively affected by added salt. In pure water, Rh for the PNIPAM-coated gold nanoparticles at 40 degrees C (>lower critical solution temperature (LCST)) was smaller than that at 25 degrees C (相似文献   

5.
Thiol end-functionalized polystyrene chains have been introduced onto the surface of gold nanoparticles via a two-step grafting-to method. This simple grafting procedure is demonstrated to be efficient for gold nanoparticles of different sizes and for particles initially dispersed in either aqueous or organic media. The method has been applied successfully for a relatively large range of polystyrene chain lengths. Grafting densities, as determined by thermogravimetric analysis, are found to decrease with increasing chain length. In all cases, the grafting density indicates a dense brush conformation for the tethered chains. The resulting functionalized nanoparticles self-organize into hexagonally ordered monolayers when cast onto solid substrates from chloroform solution. Furthermore, the distance between the gold cores in the dried monolayer is controlled by the molecular weight of the grafted polystyrene. Optical absorption spectra recorded for the organized monolayers show the characteristic plasmon absorption of the gold particles. Importantly, the plasmon resonance frequency exhibits a distinct dependence on interparticle separation that can be attributed to plasmon coupling between neighboring gold cores.  相似文献   

6.
This paper describes the fabrication of hybrid nanoassemblies with polymer brushes and gold nanoparticles enabling detection of nanoscale optical changes based on localized surface plasmon resonance. The reversible and thermosensitive nanoscale actuation is achieved by combining stimuli-responsive polymer brushes and gold nanoparticles independently and selectively assembled on substrates. These hybrid nanoassemblies are assembled on numerous substrates and will be applicable for optoelectronics, nanoactuator, and nanosensor applications.  相似文献   

7.
The character of the interaction between ultrasmall gold nanoparticles and ozone is shown to be mainly governed by the particle structure. For borohydride sols of gold nanoparticles with sizes of ??3 nm, which are characterized by metallic properties, this interaction is reduced to reversible adsorption of ozone on their surface. At the same time, ozone adsorption on ??nonplasmon?? Au particles that have a diameter of 2 nm and a very defective structure results in their irreversible structural rearrangement and transition to a metallic state, which is accompanied by the appearance of a surface plasmon resonance. The set of the results obtained shows that nanoparticles of borohydride gold sols are more efficient as possible hemosensors of ozone than are larger particles synthesized by the citrate method.  相似文献   

8.
A biocompatible water-soluble dextran has been used for controllable one-dimensional assembly of gold nanoparticles via a one-pot method.Long gold nanoparticle chains with good dispersion in water could be easily obtained after adding dextran into the mixture of HAuCl 4 and sodium citrate.The measurements of scanning electron microscopy(SEM) and dynamic light scattering(DLS) confirmed the formation of gold nanoparticle chains.The morphology and dispersion properties of gold nanoparticle chains could be tuned by adjustment of the reagent ratio,stirring speed,and reaction time.  相似文献   

9.
This paper introduces strategies for enhancement of a surface plasmon resonance (SPR) signal by adopting colloidal gold nanoparticles (AuNPs) and a SiO2 layer on a gold surface. AuNPs on SiO2 on a gold surface were compared with an unmodified gold surface and a SiO2 layer on a gold surface with no AuNPs attached. The modified surfaces showed significant changes in SPR signal when biomolecules were attached to the surface as compared with an unmodified gold surface. The detection limit of AuNPs immobilized on a SPR chip was 0.1 ng mL−1 for the prostate-specific antigen (PSA), a cancer marker, as measured with a spectrophotometer. Considering that the conventional ELISA method can detect ∼10 ng mL−1 of PSA, the strategy described here is much more sensitive (∼100 fold). The enhanced shift of the absorption curve resulted from the coupling of the surface and particle plasmons by the SiO2 layer and the AuNPs on the gold surface.  相似文献   

10.
Amphiphilic gold nanoparticles are demonstrated to effectively stabilize emulsions of hexadecane in water. Nanoparticle surfactants are synthesized using a simple and scalable one-pot method that involves the sequential functionalization of particle surfaces with thiol-terminated polyethylene glycol (PEG) chains and short alkane-thiol molecules. The resulting nanoparticles are shown to be highly effective emulsifying agents due to their strong adsorption at oil-water and air-water interfaces. The original nonfunctionalized gold nanoparticles are unable to effectively stabilize oil-water emulsions due to their small size and low adsorption energy. Small-angle X-ray scattering and electron microscopy are used to demonstrate the formation of nanoparticle-stabilized colloidosomes that are stable against coalescence and show significant shifts in plasmon resonance enhancing the near-infrared optical absorption.  相似文献   

11.
Simple methods of preparing silver and gold nanoshells on the surfaces of monodispersed polystyrene microspheres of different sizes as well as of silver nanoshells on free-standing gold nanoparticles are presented. The plasmon resonance absorption spectra of these materials are presented and compared to predictions of extended Mie scattering theory. Both silver and gold nanoshells were grown on polystyrene microspheres with diameters ranging from 188 to 543 nm. The commercially available, initially carboxylate-terminated polystyrene spheres were reacted with 2-aminoethanethiol hydrochloride (AET) to yield thiol-terminated microspheres to which gold nanoparticles were then attached. Reduction of silver nitrate or gold hydroxide onto these gold-decorated microspheres resulted in increasing coverage of silver or gold on the polystyrene core. The nanoshells were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis spectroscopy. By varying the core size of the polystyrene particles and the amount of metal (silver or gold) reduced onto them, the surface plasmon resonance of the nanoshell could be tuned across the visible and the near-infrared regions of the electromagnetic spectrum. Necklace-like chain aggregate structures of gold core–silver shell nanoparticles were formed by reducing silver nitrate onto free citrate-gold nanoparticles. The plasmon resonance absorption of these nanoparticles could also be systematically tuned across the visible spectrum.  相似文献   

12.
Aqueous dispersions of gold nanoparticles protected with a stimuli-sensitive diblock copolymer were studied as a function of pH and temperature. Poly(methacrylic acid)-block-poly(N-isopropylacrylamide), PMAA-b-PNIPAM, copolymer was synthesized using the RAFT technique. A one-pot method utilizing the dithiobenzoate functionalized polymer was used to prepare gold nanoparticles protected with PMAA-b-PNIPAM. The gold nanoparticles coated with block copolymers, with the PNIPAM block bound to the particle surface and PMAA as an outer block form stimuli-sensitive aggregates in water. The changes in the absorption maxima of the surface plasmon resonance, SPR, of the gold particles and in the size of the aggregates were investigated as a function of pH and temperature. pH was observed to affect the size of the aggregates, whereas the effect of temperature was moderate. However, a blue shift in the SPR was observed both with decreasing pH and increasing temperature. Whereas the PMAA blocks control the colloidal stability of the particles and their aggregates, the thermo-sensitive PNIPAM blocks have a noticeable effect on the polarity of the immediate surroundings of the particles.  相似文献   

13.
In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to Ag nanoparticles in a colloid solution and then transfers the Ag nanoparticles capped by negatively charged mercaptoacetic acid onto a quartz slide. By transfer of the AgI/Ag nanoparticles from the colloid solutions to the solid substrates, the problem of instability of the colloid solutions can largely be overcome. The films thus prepared by both approaches retain the merits of metal colloid solutions while they discharge their shortcomings. Accordingly, the obtained Ag particle films are very suitable as SERS active substrates. SERS active substrates with different coverages can be formed in a layer-by-layer electrostatic assembly by exposing positively charged surfaces to the colloid solutions containing oppositely charged AgI/Ag nanoparticles. The SERS active substrates fabricated by the two novel methods have been characterized by means of atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy. The results of AFM and UV-vis spectroscopy show that the Ag nanoparticles grow with the increase in the number of coverage and that most of them remain isolated even at high coverages. Consequently, the surface optical properties are dominated by the absorption due to the isolated Ag nanoparticles. The relationship between SERS intensity and surface morphology of the new active substrates has been investigated for Rhodamine 6G (R6G) adsorbed on them. It has been found that the SERS enhancement depends on the size and aggregation of the Ag particles on the substrates. Especially, we can obtain a stronger SERS signal from the substrate prepared by method 1, implying that for the metal nanoparticles capped with stabilizer molecules such as mercaptoacetic acid, the in situ deoxidization in the film is of great use in preparing SERS active substrates. Furthermore, we have found that the addition of Cl- into the AgI colloid solution changes the surface morphology of the SERS active substrates and favors stronger SERS enhancement.  相似文献   

14.
Gold nanoparticles (1-10 nm size range) were prepared with an appreciably narrow size distribution by in situ reduction of HAuCl(4) in the presence of heterobifunctional poly(ethylene glycol) (PEG) derivatives containing both mercapto and acetal groups (alpha-acetal-omega-mercapto-PEG). The alpha-acetal-PEG layers formed on gold nanoparticles impart appreciable stability to the nanoparticles in aqueous solutions with elevated ionic strength and also in serum-containing medium. The PEG acetal terminal group was converted to aldehyde by gentle acid treatment, followed by the reaction with p-aminophenyl-beta-D- lactopyranoside (Lac) in the presence of (CH(3))(2)NHBH(3). Lac-conjugated gold nanoparticles exhibited selective aggregation when exposed to Recinus communis agglutinin (RCA(120)), a bivalent lectin specifically recognizing the beta-D-galactose residue, inducing significant changes in the absorption spectrum with concomitant visible color change from pinkish-red to purple. Aggregation of the Lac-functionalized gold nanoparticles by the RCA(120) lectin was reversible, recovering the original dispersed phase and color by addition of excess galactose. Further, the degree of aggregation was proportional to lectin concentration, allowing the system to be utilized to quantitate lectin concentration with nearly the same sensitivity as ELISA. This simple, yet highly effective, derivatization of gold nanoparticles with heterobifunctional PEG provides a convenient method to construct various colloidal sensor systems currently applied in bioassays and biorecognition.  相似文献   

15.
We have developed a colloidal assembly for the study of plasmon–plasmon interactions between gold nanoparticles. Colloidal aggregates of controlled size and interparticle spacing were synthesized on silica nanoparticle substrates. Following the immobilization of isolated gold nanoparticles onto silica nanoparticles, the surfaces of the adsorbed gold nanoparticles were functionalized with 4-aminobenzenethiol. This molecular linker attached additional gold nanoparticles to the ‘parent' gold nanoparticle, forming small nanoparticle aggregates. The optical absorption spectrum of these clusters differed from that of gold colloid in a manner consistent with plasmon–plasmon interactions between the gold nanoparticles.  相似文献   

16.
We report the formation of novel thermosensitive hybrid core-shell particles via in situ synthesis of gold nanoparticles using thermosensitive core-shell particles as a template. The template core-shell particles, with cores composed mainly of poly(glycidyl methacrylate) (GMA) and shells composed mainly of poly(N-isopropylacrylamide) (PNIPAM), were synthesized in aqueous medium, and functional groups such as thiol groups were incorporated into each particle. We found that these particles containing thiol groups were effective for the in situ synthesis of gold nanoparticles in long-term storage. The obtained hybrid particles exhibited a reversible color change from red to purple, which originated from the surface plasmon resonance of gold nanoparticles and which was temperature-dependent in the range of 25-40 degrees C. In addition to their thermosensitive property, the hybrid particles exhibited the unique characteristic of uniform distribution on a solid substrate. The particles obtained by this approach have potential thermosensitive applications such as in sensors and photonic or electronic devices.  相似文献   

17.
We report a novel strategy for the synthesis of magnetic nanocomposite for highly efficient catalysis. Poly(glycidyl methacrylate) (PGMA) chains were grafted to the surface of magnetic nanoparticles (MNPs) through surface-initiated reversible addition-fragmentation chain transfer polymerization. Then, the oxirane rings in the PGMA chains were opened with 2,6-diamino pyridine (DAP) molecules as ligands to prepare the solid support. Finally, this magnetic nanocomposite was used for the immobilization of gold nanoparticles. Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, gel permeation chromatography, vibrating sample magnetometry, and atomic absorption spectroscopy were used for characterization of the catalyst. The loading of gold nanoparticles on the solid support was 0.52 mmol/g. The catalytic activity of the prepared catalyst (MNP@PGMA@DAP@Au) was evaluated for the reduction of nitro compounds and C–C coupling reaction in water. The catalyst can be easily recovered and reused seven times without significant loss of catalytic activity.  相似文献   

18.
The change in optical properties of colloidal gold upon aggregation has been used to develop an experimentally convenient colorimetric method to study the interfacial phase transition of an elastin-like polypeptide (ELP), a thermally responsive biopolymer. Gold nanoparticles, functionalized with a self-assembled monolayer (SAM) of mercaptoundecanoic acid onto which an ELP was adsorbed, exhibit a characteristic red color due to the surface plasmon resonance (SPR) of individual colloids. Raising the solution temperature from 10 degrees C to 40 degrees C thermally triggered the hydrophilic-to-hydrophobic phase transition of the adsorbed ELP resulting in formation of large aggregates due to interparticle hydrophobic interaction. Formation of large aggregates caused a change in color of the colloidal suspension from red to violet due to coupling of surface plasmons in aggregated colloids. The surface phase transition of the ELP was reversible, as seen from the reversible change in color upon cooling the suspension to 10 degrees C. The formation of colloidal aggregates due to the interfacial phase transition of adsorbed ELP was independently verified by dynamic light scattering of ELP-modified gold colloids as a function of temperature. Colloidal SPR provides a simple and convenient colorimetric method to study the influence of the solution environment, interfacial properties, and grafting method on the transition properties of ELPs and other environmentally responsive polymers at the solid-water interface.  相似文献   

19.
In this article, we describe the formation of carbon nanotube (CNT)-gold nanoparticle composites in aqueous solution using 1-pyrenemethylamine (Py-CH2NH2) as the interlinker. The alkylamine substituent of 1-pyrenemethylamine binds to a gold nanoparticle, while the pyrene chromophore is noncovalently attached to the sidewall of a carbon nanotube via pi-pi stacking interaction. Using this strategy, gold nanoparticles with diameters of 2-4 nm can be densely assembled on the sidewalls of multiwalled carbon nanotubes. The formation of functionalized gold nanoparticles and CNT-Au nanoparticle composites was followed by UV-vis absorption and luminescence spectroscopy. After functionalization of gold nanoparticles with 1-pyrenemethylamine, the distinct absorption vibronic structure of the pyrene chromophore was greatly perturbed and its absorbance value was decreased. There was also a corresponding red shift of the surface plasmon resonance (SPR) absorption band of the gold nanoparticles after surface modification from 508 to 556 nm due to interparticle plasmon coupling. Further reduction of the pyrene chromophore absorbance was observed upon formation of the CNT-Au nanoparticle composites. The photoluminescence of 1-pyrenemethylamine was largely quenched after attaching to gold nanoparticles; formation of the CNT-Au nanoparticle composites further lowered its emission intensity. The pyrene fluoroprobe also sensed a relatively nonpolar environment after its attachment to the nanotube surface. The present approach to forming high-density deposition of gold nanoparticles on the surface of multiwalled carbon nanotubes can be extended to other molecules with similar structures such as N-(1-naphthyl)ethylenediamine and phenethylamine, demonstrating the generality of this strategy for making CNT-Au nanostructure composites.  相似文献   

20.
“Reverse” colorimetric DNA detection by the formation of core-shell particles upon DNA hybridization is described. Specifically, the assay is based on a strategy to covalently link polymer reaction initiators to suspended nanoparticles upon DNA hybridization. These initiators then prompt polymer chain growth to form a thick polymer shell outside of particles, acting as the physical barrier to keep Au particles apart. Particles without DNA hybridization aggregate, accompanied by a pronounced solution color change from red to blue. The focus of this report is to address reaction kinetics of two co-occurring processes: polymer growth and particle aggregation during the reverse colorimetric DNA assay. The results show that Cu ions used as the polymerization catalyst bind strongly to the bases in DNA molecules, resulting in crosslinking of DNA-attached gold nanoparticles and their subsequent precipitation. Both Cu-ion-assisted particle aggregation and polymer growth are found to depend strongly on Cu ion concentration, salt concentration, and reaction temperature. Under the optimized conditions, faster polymer chain growth on the surface overcomes particle aggregation and preserves particle stability via steric stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号