首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tin-based nanocomposite materials embedded in carbon frameworks can be used as effective negative electrode materials for lithium-ion batteries (LIBs), owing to their high theoretical capacities with stable cycle performance. In this work, a low-cost and productive facile hydrothermal method was employed for the preparation of a Sn/C nanocomposite, in which Sn particles (sized in nanometers) were uniformly dispersed in the conductive carbon matrix. The as-prepared Sn/C nanocomposite displayed a considerable reversible capacity of 877 mAhg−1 at 0.1 Ag−1 with a high first cycle charge/discharge coulombic efficiency of about 77%, and showed 668 mAh/g even at a relatively high current density of 0.5 Ag−1 after 100 cycles. Furthermore, excellent rate capability performance was achieved for 806, 697, 630, 516, and 354 mAhg−1 at current densities 0.1, 0.25, 0.5, 0.75, and 1 Ag−1, respectively. This outstanding and significantly improved electrochemical performance is attributed to the good distribution of Sn nanoparticles in the carbon framework, which helped to produce Sn/C nanocomposite next-generation negative electrodes for lithium-ion storage.  相似文献   

2.
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li_4Ti_5O_(12)nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li_4Ti_5O_(12)(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li_4Ti_5O_(12)anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ah g~(-1)at 500 m A g~(-1)(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 m Ah g~(-1)at4000 m A g~(-1)),an outstanding cycling stability(reversible specific capacity of 883 m Ah g~(-1)after 150 cycles)and a low volume expansion rate(only 3.3%after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li_4Ti_5O_(12)nanocomposite anode materials for practical lithium-ion batteries.  相似文献   

3.
新合成方法制备的LiCoO2正极材料的结构和电化学性能研究   总被引:2,自引:0,他引:2  
王剑  其鲁  柯克  晨辉 《无机化学学报》2004,20(6):635-640
采用新合成方法制备了锂离子二次电池正极材料LiCoO2。通过ICP-AES、XRD、SEM、电化学方法等测试分析了所合成材料的物理性质和电化学性能,并与商品LiCoO2材料作了对比研究。同时分别以国产MCMB和石墨作负极活性物质、合成的LiCoO2作正极活性物质做成锂离子电池,对其电化学性能进行了测试。实验结果表明,所合成的LiCoO2材料的电化学性能优于其它两种商品LiCoO2材料,其初始放电容量为155.0 mAh·g-1,50次循环后的容量保持率达95.3%,而且以此为正极的锂离子电池也表现出优良的电化学性能。计时电位分析结果还表明,合成的材料在充放电循环过程中发生了三次相转变过程,但相变过程具有良好的可逆性。  相似文献   

4.
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode.  相似文献   

5.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

6.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

7.
We report the high-rate capability and good cyclability of three-dimension nanoporous NiO films as the anodes of lithium-ion batteries. The NiO films are fabricated by immersing foam nickel substrates in an 80 °C aqueous solution containing ammonia and potassium peroxydisulfate, and subsequent heat treatment at 500 °C. At a rate of 1.0 C, the film electrodes maintain a capacity of 560 mAh g−1 as well as capacity retention of 97% after 100 discharge/charge cycles. When the current density is increased to 14C, 42% of the capacity can be retained. Owing to the ease of large-scale fabrication and superior electrochemical performance, these NiO films will be promising anodes for high-energy-density lithium-ion batteries.  相似文献   

8.
相较于传统燃油汽车,电动汽车缓慢的充电速度始终制约了其进一步推广。为电动汽车实现“加油式”快速充电能够缓解充电桩的使用压力,增加电动汽车的应用场景和市场占有率。因此,亟需开发出具有快速充放电能力的高性能锂离子电池。石墨因其低廉的价格和优异的电化学性能已经在锂离子电池负极领域得到了广泛的商业化应用,然而其较低的嵌锂电位导致在快充过程中出现析锂,损害电化学性能的同时会带来安全隐患。因此,必须对石墨进行改良处理,以适应快充技术的需要。本文系统介绍了近年来石墨负极快充化改良领域的研究进展,从成分设计,形貌调控,结构优化,电解液适配等方面进行了评述,并总结了快充石墨面临的挑战,展望了其发展前景,为推动快充技术的商业化应用提供了借鉴。  相似文献   

9.
Driven by the excessive environmental pollution caused by the over-use of non-renewable fossil-derived energy, renewable energy and electrochemical energy storage devices have made great progress in the past decades. Electrochemical energy storage devices, such as lithium-ion batteries, have the advantages of high capacity, long life cycle, and good safety performance; therefore, they have been used in various applications. For example, economical and environment-friendly electric vehicles have recently taken up increasing market share. However, when compared with vehicles propelled using fossil-derived energy, the slow charging speed of electric vehicles has always restricted their further promotion. The realization of rapid charging for electric vehicles can alleviate the high-pressure usage of charging piles as well as increase the application and market share of electric vehicles. Therefore, it is important to develop high-performance lithium-ion batteries with rapid charge and discharge capacities. The fast-charging capacity of lithium-ion batteries is limited by the slow migration of lithium ions in the electrode and the electrode/electrolyte interface. Therefore, the key to developing fast-charging lithium-ion batteries lies in the successful design of suitable electrode materials. Because of its low cost and excellent electrochemical performance, graphite has been widely used to develop the cathode of lithium-ion batteries. However, the migration of lithium ions in graphite is slow, resulting in large polarization during the high-current charge and discharge processes. In addition, the low lithium intercalation potential of graphite leads to lithium precipitation during fast charging, which can decrease the electrochemical performance and cause potential safety hazards. Therefore, graphite must be improved to meet the needs of such fast-charging devices. In this article, we systematically introduce the research progress made in recent years within the scope of rapid-charging improvement of graphite(-based) cathodes and then highlight the modification strategies for graphite with the goal of achieving functional coating, desired morphological and structural design, optimized electrolyte properties, and an improved charging protocol. Additionally, this article evaluates the advantages and disadvantages of the modification strategies as well as their application prospects. The scheme of functional coating for modifying graphite must simplify the process and improve production efficiency to meet the needs of industrial development. Morphology design should ensure satisfactory initial Coulomb efficiency, while the improvement of the electrolyte properties and optimization of the charging protocol need to consider the commercialization costs. Finally, this paper proposes further evaluation of the effects of the modification strategies based on soft-pack or cylindrical batteries to strengthen the commercialization prospect of the modification strategies.   相似文献   

10.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性,研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界而特征.实验结果表明,LiODFB不仅具有更高的热稳定性,而且在EC+DMC溶剂中具有较好的电化学性能.与使用LiPF6/EC+DMC的电解液相比,锂离子电池应用LiODFB基电解液在55℃的高温具有更好的容量保持能力;以0.5C、1C(1C=250 mA·g-1)倍率循环放电,两种电池间的倍率性能差别较小;LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜);交流阻抗表明,使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗.因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

11.
Si/SiOC composites are promising high-capacity anode materials for lithium-ion batteries since the SiOC matrix can effectively buffer the volumetric change of Si during cycling. However, a structure of Si nanoparticles (NPs) enwrapped by a continuous SiOC phase typically shows poor cyclic stability and low charge/discharge rate due to structure failure of bulk SiOC shells derived from carbon-rich organosilicon. To address this issue, in this work, an Si/SiOC nanocomposite with volume-change-buffering microstructure, in which Si NPs are uniformly dispersed in a matrix of SiOC nanospheres, has been synthesized. Our results show that the space between Si and SiOC NPs can accommodate the large volume change of Si during cycling and facilitate infiltration of the electrolyte. The nanostructured SiOC skeleton serves as both a mechanically robust buffer to alleviate the intrinsic expansion of Si and an effective electron conductor. The Si/SiOC NP composite displays significantly increased capacity and cyclic stability compared with pure SiOC, and delivers reversible capacities of around 800 mA h−1 g−1 at a current density of 100 mA g−1 (approximately 100 % capacity retention after 100 cycles) and around 600 mA h−1 g−1 at 500 mA g−1 (capacity retention about 80 % after 500 cycles).  相似文献   

12.
Core–shell LiFePO4/C composite was synthesized via a sol–gel method and doped by fluorine to improve its electrochemical performance. Structural characterization shows that F ions were successfully introduced into the LiFePO4 matrix. Transmission electron microscopy verifies that F-doped LiFePO4/C composite was composed of nanosized particles with a ~3 nm thick carbon shell coating on the surface. As a cathode material for lithium-ion batteries, the F-doped LiFePO4/C nanocomposite delivers a discharge capacity of 162 mAh/g at 0.1 C rate. Moreover, the material also shows good high-rate capability, with discharge capacities reaching 113 and 78 mAh/g at 10 and 40 C current rates, respectively. When cycled at 20 C, the cell retains 86% of its initial discharge capacity after 400 cycles, demonstrating excellent high-rate cycling performance.  相似文献   

13.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性, 研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界面特征. 实验结果表明, LiODFB不仅具有更高的热稳定性, 而且在EC+DMC溶剂中具有较好的电化学性能. 与使用LiPF6/EC+DMC的电解液相比, 锂离子电池应用LiODFB基电解液在55 ℃的高温具有更好的容量保持能力; 以0.5C、1C(1C=250 mA·g-1)倍率循环放电, 两种电池间的倍率性能差别较小; LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜); 交流阻抗表明, 使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗. 因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

14.
Olivine LiFePO4/C nanocomposite cathode materials with small-sized particles and a unique electrochemical performance were successfully prepared by a simple solid-state reaction using oxalic acid and citric acid as the chelating reagent and carbon source. The structure and electrochemical properties of the samples were investigated. The results show that LiFePO4/C nanocomposite with oxalic acid (oxalic acid: Fe2+= 0.75:1) and a small quantity of citric acid are single phase and deliver initial discharge capacity of 122.1 mAh/g at 1 C with little capacity loss up to 500 cycles at room temperature. The rate capability and cyclability are also outstanding at elevated temperature. When charged/discharged at 60 °C, this materials present excellent initial discharge capacity of 148.8 mAh/g at 1 C, 128.6 mAh/g at 5 C, and 115.0 mAh/g at 10 C, respectively. The extraordinarily high performance of LiFePO4/C cathode materials can be exploited suitably for practical lithium-ion batteries.  相似文献   

15.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

16.
Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%.  相似文献   

17.
Porous lithium titanate (Li4Ti5O12) fibers, composed of interconnected nanoparticles, are synthesized by thermally treating electrospun precursor fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li4Ti5O12 fibers calcined at 700?°C have an average diameter of 230?nm. Especially, the individual fiber is composed of nanoparticles with an average diameter of 47.5?nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The results show that as-prepared Li4Ti5O12 exhibits good cycling capacity and rate capability. At the charge–discharge rate of 0.2, 0.5, 1, 2, 10, 20, 40, and 60?C, its discharge capacities are 172.4, 168.2, 163.3, 155.9, 138.7, 123.4, 108.8, and 90.4?mAh?g?1, respectively. After 300 cycles at 20?C, it remained at 120.1?mAh?g?1. The obtained results thus strongly support that the electrospun Li4Ti5O12 fibers could be one of the most promising candidate anode materials for lithium-ion batteries in electric vehicles.  相似文献   

18.
Low-cost and high-efficiency production of silicon-based material is the key to improve the energy density of lithium-ion batteries. Herein, we propose a novel structure of FeSi2–Si eutectic nanoparticles protected by the SiOx shell. FeSi2, as a buffer phase can improve the electrochemical stability of the electrode. A SiOx shell is formed on the surface of the nanoparticles through the passivation process. SiOx encapsulated FeSi2–Si eutectic nanoparticles exhibit excellent capacity of 674.9 mAh/g after 500 charge/discharge cycles. The capacity retention rate is above 90% after the stabilization process. This work provides a new nanomaterial design for high performance silicon-based anode materials of lithium-ion batteries.  相似文献   

19.
The impact of vertical π-extension on redox mechanisms of aromatic diimides in the organic lithium-ion batteries have been carefully studied by a combined experiment and theoretical analyses.  相似文献   

20.
Electrolyte design has become ever more important to enhance the performance of lithium-ion batteries (LIBs). However, the flammability issue and high reactivity of the conventional electrolytes remain a major problem, especially when the LIBs are operated at high voltage and extreme temperatures. Herein, we design a novel non-flammable fluorinated ester electrolyte that enables high cycling stability in wide-temperature variations (e.g., −50 °C–60 °C) and superior power capability (fast charge rates up to 5.0 C) for the graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) battery at high voltage (i.e., >4.3 V vs. Li/Li+). Moreover, this work sheds new light on the dynamic evolution and interaction among the Li+, solvent, and anion at the molecular level. By elucidating the fundamental relationship between the Li+ solvation structure and electrochemical performance, we can facilitate the development of high-safety and high-energy-density batteries operating in harsh conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号