首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid-state 63Cu and 65Cu NMR experiments have been conducted on a series of inorganic and organometallic copper(I) complexes possessing a variety of spherically asymmetric two-, three-, and four-coordinate Cu coordination environments. Variations in structure and symmetry, and corresponding changes in the electric field gradient (EFG) tensors, yield 63/65Cu quadrupolar coupling constants (CQ) ranging from 22.0 to 71.0 MHz for spherically asymmetric Cu sites. These large quadrupolar interactions result in spectra featuring quadrupolar-dominated central transition patterns with breadths ranging from 760 kHz to 6.7 MHz. Accordingly, Hahn-echo and/or QCPMG pulse sequences were applied in a frequency-stepped manner to rapidly acquire high S/N powder patterns. Significant copper chemical shielding anisotropies (CSAs) are also observed in some cases, ranging from 1000 to 1500 ppm. 31P CP/MAS NMR spectra for complexes featuring 63/65Cu-31P spin pairs exhibit residual dipolar coupling and are simulated to determine both the sign of CQ and the EFG tensor orientations relative to the Cu-P bond axes. X-ray crystallographic data and theoretical (Hartree-Fock and density functional theory) calculations of 63/65Cu EFG and CS tensors are utilized to examine the relationships between NMR interaction tensor parameters, the magnitudes and orientations of the principal components, and molecular structure and symmetry.  相似文献   

2.
3.
The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents.  相似文献   

4.
Synthetic imidazole ligands are typically substituted at the N(1) ((1)-Im) position while natural imidazole ligands are substituted at the C(4) ((4)-Im) position. To outline the difference in coordination properties, the methyl-substituted imidazoles Me(4)-Im and Me(1)-Im were complexed with CuCl(2) and ZnCl(2) and investigated by NMR relaxometry, electron paramagnetic resonance, far-Fourier transform IR vibrational spectroscopy, and ab initio calculations. Me(4)-Im, Me(1)-Im, and Im in excess form the usual tetragonal D(4h) [CuL(4)X(2)] complexes with CuCl(2) whereas the methylated imidazoles form pseudotetrahedral C(2v) complexes instead of the usual octahedral O(h) [ZnIm(6)](2+) complex. All imidazoles display a high degree of covalence in the M-L σ- and π-bonds and the π-interaction strength affects the relative energies of complexation. Opportunities to tailor complexes by the chemical properties of the substituents are envisaged due to the role of the inductive and hyperconjugative effects, rather than position.  相似文献   

5.
A conclusion regarding a diequatorial orientation of the aryl substituents was drawn on the basis of a study of the 1H and 13C NMR spectra of 2,6-diarylthiacyclohexanes. A trans structure of the complexes with an equatorial Smetal bond was established by a comparative analysis of the 13C NMR spectra of 2,6-diarylthiacyclohexanes and their complexes with Pt(II) and Pd(II).Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 609–613, May, 1987.  相似文献   

6.
A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on hydrogens covalently attached to carbon and oxygen atoms in 13C,15N labeled and fully protonated or fractionally deuterated proteins to uniformly enhance longitudinal relaxation of the 1HN spins and concomitantly the sensitivity of multipulse NMR experiments. The proposed longitudinal relaxation optimization is implemented in the 2D [15N,1H]-LTROSY, 2D [15N,1H]-LHSQC and 3D LTROSY-HNCA experiments yielding the factor 2-2.5 increase of the maximal signal-to-noise ratio per unit time at 600 MHz. At 900 MHz, the predicted decrease of the 1HN longitudinal relaxation times can be as large as one order of magnitude, making the proposed method an important tool for protein NMR at high magnetic fields.  相似文献   

7.
We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or approximately 4.7% of the overall approximately 860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement.  相似文献   

8.
The iron(III) 2,7,12,17-tetra-n-propylporphycene (TPrPc)FeIIICl is reduced using aqueous sodium dithionite or zinc amalgam to produce (TPrPc)FeII. The 1H NMR spectrum of (TPrPc)FeII (293 K; delta (ppm): pyrrole, -37.52; meso, 71.56; alpha-CH2, 27.47; beta-CH2, 8.92; gamma-CH3, 5.55) can be accounted for by the planar unligated iron(II) porphycene with an S = 1 ground electronic state. Introduction of dioxygen into a toluene-d8 solution of (TPrPc)FeII at 203 K results in the formation of the (mu-peroxo)diiron(III) porphycene (TPrPc)FeIII-O-O-FeIII(TPrPc). The value of the chemical shift of the pyrrole resonances (17.99 ppm at 203 K) of this species and its distinct non-Curie behavior imply strong antiferromagnetic iron(III)-iron(III) coupling via a mu-peroxo bridge. The (TPrPc)FeIII-O-O-FeIII(TPrPc) intermediate is stable at 203 K, but it converts into the (mu-oxo)diiron complex (TPrPc)FeIII-O-FeIII(TPrPc) upon warming above 203 K. Reaction of (TPrPc)FeIII-O-O-FeIII(TPrPc) with a nitrogen bases (B: pyridine-d5, 1-methylimidazole) results in a homolytic cleavage of the mu-peroxo bridge to form the ferryl porphycene complex B(TPrPc)FeIVO (1H NMR (223 K), delta (ppm): pyrrole, -1.32; meso, 11.80). B(TPrPc)FeIVO reacts with triphenylphosphine at 223 K to yield triphenylphosphine oxide.  相似文献   

9.
Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.  相似文献   

10.
The nuclear magnetic resonance (NMR) and dielectric spectroscopy (DS) methods were used to investigate the segmental and global dynamics in lamellar microphase separated poly(styrene-b-isoprene) (SI) diblock copolymer. For the first time, the susceptibility representation of the NMR relaxation data is applied to the analysis of the molecular dynamics in complex polymer systems like the diblock copolymer. This approach in combination with the frequency-temperature superposition (FTS) allows one to compare directly the NMR and DS data in an extended frequency range providing a unique comprehensive picture of various relaxation processes present in the system studied. The findings of these investigations include structural relaxations of the polyisoprene (PI) and the polystyrene (PS) blocks, a normal mode relaxation of the PI block, and an extra low frequency interfacial relaxation. Special attention has been devoted to influence of the copolymer morphology on the segmental and global dynamics in PI.  相似文献   

11.
To investigate the backbone dynamics of proteins 15N longitudinal and transverse relaxation experiments combined with {1H, 15N{ NOE measurements together with molecular dynamics simulations were carried out using ribonuclease T1 and the complex of ribonuclease T1 with 2′GMP as a model protein. The intensity decay of individual amide cross peaks in a series of (1H, 15N)HSQC spectra with appropriate relaxation periods was fitted to a single exponential by using a simplex algorithm in order to obtain 15N T1 and T2 relaxation times. The relaxation times were analyzed in terms of the “model-free” approach introduced by Lipari and Szabo. In addition, a nanosecond molecular dynamics (MD ) simulation of ribonuclease T1 and its 2′GMP complex in water was carried out. The angular reorientations of the backbone amide groups were classified with several coordinate frames following a transformation of NH vector trajectories. In this study, NH librations and backbone dihedral angle fluctuations were distinguished. The NH bond librations were found to be similar for all amides as characterized by correlation times of librational motions in a subpicosecond scale. The angular amplitudes of these motions were found to be about 10°–12° for out-of-plane displacements and 3°–5° for the in-plane displacement. The contributions from the much slower backbone dihedral angle fluctuations strongly depend on the secondary structure. The dependence of the amplitude of local motion on the residue location in the backbone is in good agreement with the results of NMR relaxation measurements and the X-ray data. The protein dynamics is characterized by a highly restricted local motion of those parts of the backbone with defined secondary structure as well as by a high flexibility in loop regions. Comparison of the MD and NMR data of the free liganded enzyme ribonuclease T1 clearly indicates a restriction of the mobility within certain regions of the backbone upon inhibitor binding. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The assignment of the absolute configuration of alpha-chiral primary amines by complexation of their MPA derivatives with Ba2+ and NMR analysis of the changes generated is presented. All that is required is (a) the derivatization of the amine of unknown configuration with one enantiomer of the auxiliary reagent (MPA), either (R) or (S)-alpha-methoxyphenylacetic acid, (b) the recording of the 1H NMR spectrum of the resulting amide in MeCN-d3, (c) the addition of Ba(ClO4)2 to the NMR tube, and (d) the recording of a second spectrum after a few minutes of shaking. The above steps take a few minutes and are followed by an analysis of the shifts (measured as Deltadelta(Ba)) produced on the L1 and L2 substituents of the amine by the addition of Ba2+ and their comparison with those expected from the conformational changes produced by the complexation. The conformational changes initiated by complexation have been subjected to NMR and CD studies, which showed that the formation of the complex shifts the equilibrium from an antiperiplanar (AP) to a synperiplanar (SP) form, leading to an increase of the shielding by the phenyl group of MPA of the substituent of the amine located on the same side. In addition, theoretical calculations [density functional theory (DFT)] provide further support for the formation, structure, and stability of the complexes. The general applicability of this method and the trustworthiness of the resulting configurational assignment were guaranteed with a series of amines of known absolute configuration and varied structures, used as test compounds. The method proposed is simple, fast, and inexpensive, and it requires a very small amount of sample, only one derivatization, and the recording of just two 1H NMR spectra at room temperature. A graphical guide to simplify the application of this method is included.  相似文献   

13.
The hydrogen exchange process in benzamidoximes ( 1 and 2 ) was studied over a range of temperature and a determination of the activation parameter ΔG? for this process was made.  相似文献   

14.
A new series of binuclear copper(II) complexes were synthesised and studied by magnetic, spectral, ESR and cyclic voltammetry methods. The μeff values per copper atom correspond to the values observed for mononuclear copper(II) complexes. ESR spectral data in solution indicate weak interactions resulting from the electron delocalisation through the ligand system. Two nearly reversible red-ox couples are identified at +?0.50 V and +?0.75 V vs SCE. They correspond to Cu(II)αCu(III) red-ox processes, successively occurring at the two copper sites in the binuclear complexes.  相似文献   

15.
A series of diorganotin(IV) and triorganotin(IV) derivatives of monothiocarboxylate and xanthate ligands, as well as several mixed-ligand diorganotin(IV) derivatives resulting from combinations of monothiocarboxylate, xanthate or N,N-dimethyldithiocarbamate ligands were prepared and studied. The structures of these complexes were discussed in the light of i.r. and 1H NMR spectra. From an exhaustive study of the i.r. spectra of the new compounds, in relation to the i.r. spectra of some other monothiocarboxylate and xanthate derivatives of transition and non-transition metals, whose structures are known, some criteria for distinguishing the bonding mode of these ligands to the central atom have emerged. On the basis of these criteria, possible structures for the new compounds are proposed and are shown to be dependent on the number and the nature of the organo-groups attached to the tin atom.  相似文献   

16.
ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed.  相似文献   

17.
Summary Copper(III) and total copper in superconducting Y-Ba-Cu oxide and related compounds can be determinated by two successive iodimetric titrations after the sample has been dissolved under Ar in HCl/KI medium. First, the iodine equivalent to copper(III) ist titrated with Na2S2O3 solution at pH 4.8, copper(II) being masked with EDTA. The total copper is then determined in the same solution by demasking with acid and iodide, followed by iodimetric titration. The method is both accurate and reproducible. The relative standard deviations for 1.074% copper(III) and 23.37% total copper are 0.8% and 0.3%, respectively.  相似文献   

18.
A number of mono(imidazole)-ligated complexes of perchloro(meso-tetramesitylporphyrinato)iron(III), [Fe(TMP)L]ClO(4), have been prepared, and their spin states have been examined by (1)H NMR, (13)C NMR, and EPR spectroscopy as well as solution magnetic moments. All the complexes examined have shown a quantum mechanical spin admixed state of high and intermediate-spin (S = 5/2 and 3/2) states though the contribution of the S = 3/2 state varies depending on the nature of axial ligands. While the complex with extremely bulky 2-tert-butylimidazole (2-(t)()BuIm) has exhibited an essentially pure S = 5/2 state, the complex with electron-deficient 4,5-dichloroimidazole (4,5-Cl(2)Im) adopts an S = 3/2 state with 30% of the S = 5/2 spin admixture. On the basis of the (1)H and (13)C NMR results, we have concluded that the S = 3/2 contribution at ambient temperature increases according to the following order: 2-(t)BuIm < 2-(1-EtPr)Im < 2-MeIm 相似文献   

19.
Despite the fact that lead poisoning is the most common disease of environmental origin in the United States, the spectroscopic properties of aqueous Pb(II) coordination compounds have not been extensively investigated. Spectroscopic techniques that can be used to probe the fundamental coordination chemistry of Pb(II) will aid in both the development of water-soluble ligands that bind lead both tightly and selectively and the characterization of potential biological targets. Here, we report the preparation and characterization of a series of Pb(II) complexes of amido- derivatives of EDTA. The 207Pb chemical shift observed in these complexes (2441, 2189, and 1764 ppm for [Pb(EDTA)]2-, Pb(EDTA-N2), and [Pb(EDTA-N4)]2+, respectively) provides an extremely sensitive measure of the local environment and the charge on each complex. These shifts help to map out the lead chemical shift range that can be expected for biologically relevant sites. In addition, we report the first two-dimensional 207Pb-1H heteronuclear multiple-quantum correlation (HMQC) nuclear magnetic resonance spectra and demonstrate that this experiment can provide useful information about the lead coordination environment in aqueous Pb(II) complexes. Because this technique allows 207Pb-1H couplings through three bonds to be identified readily, 207Pb-1H NMR spectroscopy should prove useful for the investigation of Pb(II) in more complex systems (e.g., biological and environmental samples).  相似文献   

20.
Probing paeonol-pluronic polymer interactions by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
By using a combination of 1H NMR spectroscopy, two-dimensional heteronuclear single-quantum coherence-resolved (1)H{(13)C} and homonuclear rotating-frame Overhauser enhancement NMR correlation experiments with diffusion ordered spectroscopy (DOSY), the location and distribution of a hydrophobic drug, paeonol, have been established with respect to the methyl groups of the poly(ethylene oxide)-poly(propylene oxide) -poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The interaction between them is adjustable according to the different temperature-dependent hydrophilicities or hydrophobicities of the triblock copolymer components. On the other hand, such interactions influence the self-assembly properties of the block copolymer amphiphiles in solution. The amount of anhydrous methyl groups of PPO segments shows an increase with increasing paeonol concentration. It was also demonstrated that the shell-crosslinking of the Pluronic polymer has an effect in increasing the amount of anhydrous methyl groups and thus increasing the hydrophobicity of Pluronic micelles. This might be the deeper reason underlying the increase in drug-loading capacity and prolongation in release time of Pluronic micelles for drug delivery after the shell-crosslinking. Changes in self-diffusion coefficients of paeonol with varying copolymer concentrations and types were also determined by the diffusion-based NMR DOSY technique, and values of K(a), DeltaG, and n were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号