首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel process is described to efficiently photoconvert low-grade organic materials such as waste biomass into natural biological plastics. When heterogeneous forms of dry biomass are thermally gasified, relatively homogeneous synthesis gas mixtures composed primarily of carbon monoxide and hydrogen are produced. Unique strains of photosynthetic bacteria were isolated that nearly quantitatively photoassimilate the carbon monoxide and hydrogen components of synthesis gas into new cell mass. Under unbalanced culture conditions when cellular growth is limited by shortages of nitrogen, calcium, magnesium, iron, or essential vitamins, up to 28% of the new cell mass is found as granules of poly-3-hydroxyalkanoate (PHA), a highmolecular-weight thermoplastic that can be solvent-extracted. The dominant monomeric unit of PHAs is 3-hydroxybutyrate (3HB), which is polymerized into the homopolymeric poly-3-hydroxybutyrate (PHB). PHB is marketed as a biodegradable plastic with physical properties similar to polystyrene. When a green alga was cocultured with the photosynthetic bacterium in light-dark (day-night) cycles, the bacteria synthesized a polymer of poly-3-hydroxybutyrate-3-hydroxyvalerate (PHB-V) with a composition of 70% 3HB and 30% 3-hydroxyvalerate (3HV) to an extent of 18% of the new cell mass. PHB-V is commercially marketed as Biopol and has physical properties similar to polypropylene or polyethylene. Our results demonstrate that a strain of photosynthetic bacteria capable of photoassimilating synthesis gas or producer gas is a potential candidate for large-scale production of biological polyesters.  相似文献   

2.
Poly(3-hydroxybutyrate) [P(3HB)], a polymer belonging to the polyhydroxyalkanoate (PHA) family, is accumulated by numerous bacteria as carbon and energy storage material. The mobilization of accumulated P(3HB) is associated with increased stress and starvation tolerance. However, the potential function of accumulated copolymer such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] remained unknown. In this study, Delftia acidovorans DS 17 was used to evaluate the contributions of P(3HB) and P(3HB-co-3HV) granules during simulated exogenous carbon deprivation on cell survival by transferring cells with PHAs to carbon-free mineral salt medium supplemented with 1 % (w/v) nitrogen source. By mobilizing the intracellular P(3HB) and P(3HB-co-3HV) at 11 and 40 mol% 3HV compositions, the cells survived starvation. Surprisingly, D. acidovorans containing P(3HB-co-94 mol% 3HV) also survived although the mobilization was not as effective. Similarly, recombinant Escherichia coli pGEM-T::phbCAB Cn (harboring the PHA biosynthesis genes of Cupriavidus necator) containing P(3HB) granules had a higher viable cell counts compared to those without P(3HB) granules but without any P(3HB) mobilization when exposed to oxidative stress by photoactivated titanium dioxide. This study provided strong evidence that enhancement of stress tolerance in PHA producers can be achieved without mobilization of the previously accumulated granules. Instead, PHA biosynthesis may improve bacterial survival via multiple mechanisms.  相似文献   

3.
With the objective of developing new biodegradable materials, the miscibility and the crystallinity of blends of poly(3-hydroxybutyrate), P(3HB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), have been studied. P(3HB) (300 kg mol−1)/P(3HB-co-3HV)–10% 3HV (340 kg mol−1) blends were prepared by casting in a wide range of proportions, and characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The experimental values for the glass transition temperatures (Tg) are in good agreement with the values provided by the Fox equation, showing that the blends are miscible. It was observed that the Tg and the melting temperature (Tm) decreases with the increase in the P(3HB-co-3HV)–10% 3HV content, while the crystallization temperature (Tc) increases. FT-IR analyses confirmed the decrease on the crystallinity of P(3HB)/P(3HB-co-3HV)–10% 3HV blends with higher copolymer contents. Bands related to the crystallinity were changed, due to the copolymer content that produced miscible and less crystalline blends.  相似文献   

4.
Summary : Haloferax mediterranei was investigated for the production of two different high-performance polyhydroxyalkanoates (PHAs). A copolyester containing 6 mol-% 3-hydroxyvalerate (3HV) was produced from whey sugars as sole carbon source. The maximum specific growth rate (µmax.) and the maximum specific PHA production rate (qp max.) were determined with 0.10 1/h and 0.15 1/h, respectively. The cells contained 72.8 wt.-% of P-(3HB-co-6%-3HV) which featured low melting points between 150 and 160 °C and narrow molecular mass distribution (polydispersity PDI = 1.5). Further, a PHA terpolyester with an increased 3HV fraction as well as 4-hydroxybutyrate (4HB) building blocks was accumulated by feeding of whey sugars plus 3HV - and 4HB precursors. Kinetic analysis of the process reveals a µmax. of 0.14 1/h and a qp max. of 0.23 1/h, respectively. The final percentage of P-(3HB-co-21.8%-3HV-co-5.1%-4HB) in biomass amounted to 87.5 wt.-%. Also this material showed a narrow molecular mass distribution (PDI = 1.5) and a high difference between the two melting endotherms of the material (between 140 and 150 °C) and the onset of decomposition at 236 °C. The accomplished work provides viable strategies to obtain different high-quality PHAs which might be potential candidates for application in the medical and pharmaceutical field.  相似文献   

5.
Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 86 mol% when initial pH of the medium was regulated. In fed-batch cultivation, organic acids derived from anaerobically treated palm oil mill effluent (POME) were shown to be suitable carbon sources for polyhydroxyalkanoate (PHA) production by Comamonas sp. EB172. Number average molecular weight (Mn) produced by the strain was in the range of 153-412 kDa with polydispersity index (Mw/Mn) in the range of 2.2-2.6, respectively. Incorporation of higher 3HV units improved the thermal stability of P(3HB-co-3HV) copolymer. Thus the newly isolated bacterium Comamonas sp. EB172 is a suitable candidate for PHA production using POME as renewable and alternative cheap raw materials.  相似文献   

6.
The physicochemical properties such as the degree of crystallinity and temperature and molecularmass characteristics of a number of polyhydroxyalkanoates of various chemical composition synthesized on a complex carbon substrate by bacteria Cupriavidus eutrophus В10646 have been investigated. Two-, three-, and four-component copolymer samples have different sets and ratios of monomers with various lengths of carbon chains: 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HH), 3-hydroxy-4-methyl valerate (3H4MV), and diethylene glycol (DEG). It has been shown that weight-average molar mass М w and polydispersity vary in a wide range with no correlation existing with the composition of copolymer polyhydroxyalkanoates and that thermal stability is preserved in the temperature interval between the melting temperature and the thermal degradation temperature from 100 to 120–140°С. The composition and ratio of monomers most notably affect the degree of crystallinity of polyhydroxyalkanoates. Significant differences between the degrees of crystallinity of three- and four-component polyhydroxyalkanoates have been found for the first time. The degree of crystallinity for copolymers P(3HB/3HV/4HB) is 9–22%, and the degree of crystallinity for copolymers P(3HB/3HV/3HH) and P(3HB/3GV/3H4MV) is 41–63%; this value is close to the degree of crystallinity for diblock copolymers P(3HB)/DEG, which is 56–69%. For the four-component copolymers P(3HB/3GV/4HB/3HH), the degree of crystallinity is 30–41%. The values of М w for the copolymers P(3HB/DEG) are inhomogeneous and the polymers contain fractions uneven with respect to molecular mass: a high-molecular-mass polymer (М w from 2700 to 4900 kDa) and a low-molecular-mass polymer (М w = 46–167 kDa). For the copolymers P(3HB)/DEG and P(3HB/3HV/3H4MV), two peaks are observed in the region of melting with the gap between these peaks being 4–20°С. All of the types of copolymer samples, regardless of the monomer ratio, show an increase in elongation at break against the background of a decrease in tensile stress and Young’s modulus, with these effects being pronounced to different extents. On the whole, the properties of multicomponent polyhydroxyalkanoates differ appreciably.  相似文献   

7.
Accumulation of poly hydroxyalkanoate (PHA) from excess activated sludge (EAS) was monitored and controlled via the oxidation-reduction potential (ORP) adjusting process. The ORP was adjusted and controlled by only regulating the gas-flow rate pumped into the cultural broth in which sodium acetate (C2) and propionate (C3) were used as carbon sources. Productivity of PHA and the PHA compositions at various C2 to C3 ratios were also investigated. When ORP was maintained at +30 mV, 35% (w/w) of PHA of cell dry weight obtained when C2 was used as sole carbon source. The PHA copolymer, poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), accumulated by EAS with different 3-hydroxyvalarate (3HV) molar fractions ranged from 8% to 78.0% when C2 and C3 was used as sole carbon source, By using ORP to monitor and control the fermentation process instead DO meter, the ORP system provided more precise control to the PHA accumulation process from EAS under low dissolved oxygen (DO) concentrations. Adjusting the C2 to C3 ratios in the media could control the composition such as the 3HV/3HB ratios of the PHBV. Furthermore, it might be an effective way to adjust the 3HV molar fractions in PHBV by controlling the DO concentration via the ORP monitoring system. The 3HV molar fractions in the PHBV declined with increasing ORP from −30 mV to +100 mV by adjusting the gas-flow rate (i.e. the DO concentration). It is concluded that the DO plays a very important role in the synthesis of 3HV subunits in PHBV co-polymer from the EAS. Therefore, a hypothetic metabolic model for PHA synthesis from EAS was proposed to try to explain the results in this study.  相似文献   

8.
Poly(β-hydroxyalkanoates) are nature's high molecular weight thermoplastic polyesters. They occur as storage granules in a variety of bacteria. From a plastics, film, and fibres perspective, the statistically random copolyesters based on β-hydroxybutyrate (HB) and β-hydroxyvalerate (HV) repeating units have high potential for commercial exploitation because of their biodegradability. They provide a range of melting points from 180°C down to 80°C and all compositions exhibit high crystallinity due to isodimorphism. The latter is due to the similar crystalline conformations of poly(β-hydroxybutyrate) (PHB) and poly(β-hydroxyvalerate) (PHV). The nascent granules of a 21 mole % HV copolyester sample in freeze-dried bacterial cells were examined by 13C solid-state NMR. A disorder in the HV ethyl side group was noted but backbone carbons for HB and HV units showed evidence of crystalline order which was confirmed by x-ray diffraction. In keeping with the isodimorphous properties of this system, electron diffraction of copolyester single crystals for compositions up to 21 mole % HV confirmed a lattice expansion previously observed for bulk crystallized P(HB-co-HV). Solution or melt crystallized films showed decreasing rates of crystallization with increasing HV content. Homogeneous blends of PHB with P(HB-co-HV) could be formed which showed a single melting peak by differential scanning calorimetry. The potential of P(HB-co-HV) as a source of value-added small molecules is discussed. Depending on the method of degradation (i.e., chemical or pyrolytic) chiral synthons or vinylic small molecules are obtainable in nearly quantitative yields. Because their physical properties resemble those of polyolefins this family of chiral thermoplastics will probably find wide use in biomedical applications where compatibility and absorbability are essential features.  相似文献   

9.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for the characterization of a partially transesterified poly(beta-hydroxyalkanoate) (PHA), a polymer produced by the bacterial strain Alcaligenes eutrophus with saponified vegetable oils as the sole carbon sources. The transesterification was carried out separately under acidic and basic conditions to obtain PHA oligomers weighing <10 kDa. The intact oligomers were detected in their cationized forms, [M + Na]+ and [M + K]+, by MALDI-TOFMS. A composition analysis, using the MALDI-TOF spectra, indicated that the oligomers obtained via acid catalysis contained a methyl 3-hydroxybutyrate end group, and those obtained by base catalysis had a methyl crotonate (olefinic) end group. In addition to hydroxybutyrate (HB), the oligomers were found to contain a small percentage of hydroxyvalerate, which was independently confirmed by gas chromatography/mass spectrometry. In comparison, analysis of a commercial PHA polymer, transesterified under identical conditions, showed only the presence of HB, i.e., a pure poly(HB) homopolymer.  相似文献   

10.
Three different microbial wild-type strains are compared with respect to their potential as industrial scale polyhydroxyalkanoate (PHA) producers from the feed stock whey lactose. The halophilic archaeon Haloferax mediterranei as well as two eubacterial strains (Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava) are investigated. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-8%-hydroxyvalerate) from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity q(p): 9.1 mg x g(-1) x h(-1)). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (q(p): 2.9 mg x g(-1) x h(-1)). With H. pseudoflava, it was possible to reach 40 wt.-% P-3(HB-co-5%-HV) on non-hydrolyzed whey lactose plus addition of valeric acid as 3HV precursor (q(p): 12.5 mg x g(-1) x h(-1)). A detailed characterization of the isolated biopolyesters and an evaluation with regard to the economic feasibility completes the study.  相似文献   

11.
Polyhydroxyalkanoates, biodegradable plastics with the desired physical and chemical properties of conventional synthetic plastics, are extensively investigated. In this study, specific bacterial strains produced specific copolymers from food waste. Copolymers of HB and HV (poly[3-hydroxybutyrate-co-3-hydroxyvalerate]) were obtained using various ratios of butyric acid (C4) and valeric acid (C5) as carbon sources. The C4 to C5 ratio affected the melting points of the copolymers. Melting and glass transition temperatures and many other thermal properties are important parameters relative to in-service polymer applications. Higher ratios of butyrate to valerate gave higher melting points. When a mixed culture of activated sludge was employed to produce copolymers using food wastes as nutrients, the obtained copolymers showed various monomer compositions. Copolymers with a higher portion of HV were obtained using soy waste; copolymers with less HV were obtained using malt wastes. Pure strains, (i.e., Alcaligenes latus DSM 1122, and DSM 1124, Staphylococcus spp., Klebsiella spp.) produced specific copolymers from food waste. Only Klebsiella spp. produced different copolymers; the ratios of HB:HV were 93:7 and 79:21 from malt waste and soy waste, respectively. The other strains produced polymers of 100% HB. Selecting industrial food wastes as carbon sources can further reduce the cost of producing copolymers. Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis The University Grants Committee Area of Excellence Scheme, Hong Kong  相似文献   

12.
A new kinetic method is proposed for the simultaneous determination of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) based on the different rate of the 3-hydroxybutyrate dehydrogenase-catalysed reactions of these compounds with coenzyme NAD+. A flow injection system with two reactors of immobilised 3-hydroxybutyrate dehydrogenase and dual detection is used. The concentrations of NADH produced after two different reaction times are measured by fluorometry or spectrophotometry and multivariate linear calibration is applied for quantification. Concentrations of 3HB and 3HV between 1 × 10−6 and 1 × 10−4 M can be determined at an average sampling frequency of 20 h−1. In contrast to usual methods, the proposed here makes possible the discrimination of 3HB and 3HV without previous separation so that usual extraction with chlorinated solvents and/or chromatographic separation is not required. The method is of interest in a wide variety of fields concerning PHAs, as it can provide information on the degradation rate and mechanism, composition and structure of these polymers. Its applicability has been proved through the determination of 3HB and 3HV in the digests of some chemically degraded commercial PHAs.  相似文献   

13.
In this study, activated sludge bacteria from a conventional wastewater treatment process were induced to accumulate polyhydroxyalkanoates (PHAs) under different carbon-nitrogen (C:N) ratios. As the C:N ratio increased from 20 to 140, specific polymer yield increased to a maximum of 0.38 g of polymer/g of dry cell mass while specific growth yield decreased. The highest overall polymer production yield of 0.11 g of polymer/g of carbonaceous substrate consumed was achieved using a C:N ratio of 100. Moreover, the composition of polymer accumulated was dependent on the valeric acid content in the feed. Copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was produced in the presence of valeric acid. The 3-hydroxyvalerate (3HV) mole fraction in the copolymer was linearly related tovaleric content in the feed, which reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV U in the polymer increased from 0–54 mol%, the melting temperature decreased from 178° to 99°C. Thus, the composition, and hence the mechanical properties, of the copolymer produced from activated sludge can be controlled by adjusting the mole fraction of valeric acid in the feed medium.  相似文献   

14.
The two types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s [P(3HB-co-3HV)s] were produced by Paracoccus denitrificans ATCC 17741 using two different feeding methods. The produced P(3HB-co-3HV)s were fractionated and the copolymer sequence distributions were analyzed by 1H and 13C NMR spectroscopy. It was found that the P(3HB-co-3HV) samples produced by conventional feeding method were statistically random copolymers. The sequence distributions of P(3HB-co-3HV) samples produced by optimization method were different from random P(3HB-co-3HV)s. The thermal properties and melting behaviors were analyzed by differential scanning calorimetry (DSC). These results demonstrated that P(3HB-co-3HV) samples produced by optimization method are close in nature to P(3HB-co-3HV)s rich in long-sequence of block 3HB units, but less in 3HV random regions. The enzymatic degradation profile of P(3HB-co-3HV) films was investigated in the presence of 3-hydroxybutyrate depolymerase from Pseudomonase lemoignei. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The surface erosion of copolymer films was qualitatively monitored by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest degradation rate of 2.6% per day was observed for random P(3HB-co-38%3HV) produced by conventional method. In comparison, the hydrolysis degradation rates of random P(3HB-co-3HV)s were about one time faster than those of P(3HB-co-3HV)s produced by optimization method.  相似文献   

15.
Poly((R)-3-hydroxybutyrate), P(3HB), is produced by Alcaligenes eutrophus from fructose or butyric acid. The kinetics and mechanism of P(3HB) biosynthesis are presented. Four types of copolymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxypropionate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), and poly (3-hydroxybutyrate-co-4-hydroxybutyrate), are produced by several bacterial strains from various carbon substrates. These microbial polyesters are biodegradable thermoplastics whose physical properties can be regulated by varying the molecular structure and composition of copolymers.  相似文献   

16.
Polyhydroxyalkanoates (PHA) are polyesters having high promise in biomedical applications. Among different types of PHA, poly-4-hydroxybutyrate (P4HB) is the only polymer that has received FDA approval for medical applications. However, most PHA producing microorganisms lack the ability to synthesize P4HB or PHA comprising 4-hydroxybutyrate (4HB) monomer due to their absence of a 4HB monomer supplying pathway. Thus, most microorganisms require supplementation of 4HB precursors to synthesize 4HB polymers. However, usage of 4HB precursors incurs additional production cost. Therefore, researchers have adopted strategies to reduce the cost, such as utilizing low-cost substrate as well as constructing 4HB monomer supplying pathways in microorganisms. We herein summarize the biomedical applications of P4HB, the natural producers of 4HB polymer, and the various strategies that have been applied in producing 4HB polymers in non-4HB producing microorganisms. It is expected that the readers would gain a vivid idea on the different strategic developments in the field of 4HB polymer production.  相似文献   

17.
This paper presents the degradation trends of selected polyhydroxyalkanoate (PHA) films in a tropical mangrove environment. The biodegradability of homopolymer poly(3-hydroxybutyrate) [P(3HB)] and its co-polymers, poly(3-hydroxybutyrate-co-5 mol% 3-hydroxyvalerate) [P(3HB-co-5 mol% 3HV)] and poly(3-hydroxybutyrate-co-5 mol% 3-hydroxyhexanoate) [P(3HB-co-5 mol% 3HHx)], was investigated along with P(3HB) films containing 38 wt% titanium dioxide (TiO2) [P(3HB)-38 wt% TiO2]. The degradation of these formulations was monitored for 8 weeks at three different zones in an intermediate mangrove compartment along Sungai Pinang, adjacent to a famous fishing village on south of Penang Island. The degradation rate was observed both on the surface and in the sediment and was expressed in percentage of weight loss. The microbial enumeration done using sediment from the different zones indicated similar colony-forming unit (CFU) counts even though differences were noticed in the degradation profile of the various films in the respective zones. The results obtained revealed that co-polymers disintegrated at similar or higher rate than the homopolymer, P(3HB). However, the incorporation of TiO2 into PHB films caused the degradation rate of P(3HB)-38 wt% TiO2 composite film to be far slower than all the other PHA films. The overall rate of degradation of all PHA films placed on the sediment surface was slower than those buried in the sediment. Microscopic analyses showed that the surface morphology of P(3HB-co-5 mol% 3HHx) was more porous compared to P(3HB) and P(3HB-co-5 mol% 3HV) films, which may be an important factor for its rapid degradation.  相似文献   

18.
The biodegradation of poly(3-hydroxybutyrate), P(3HB), and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV) produced by a locally isolated bacteria identified as Erwinia sp. USMI-20 were carried out by using soil burial test and immersion test method at various places under the tropical environment in West Sumatra, Indonesia. The isolation of P(3HA)-degrading microorganisms was done by the in vitro rapid plate test method and was further characterized by using biochemical reactions. Our results showed that P(3HB) biodegraded at a rate of 3.6% per week in activated sludge, 1.9% per week in soil, 1.5% per week in lake water and 0.8% per week in Indian Ocean sea water. The degradation rates for P(3HB-co-3HV) were 17.8% per week in activated sludge, 6.7% per week in soil, 3.2% per week in lake water and 2.7% per week in Indian Ocean sea water. The biodegradation of both polymers were highest after burial into activated sludge with a half-life (T1/2) of 14 weeks and the time for 100% degradation (T100%) of 28 weeks for P(3HB), and a T1/2 of 3 weeks and T100% at 6 weeks for P(3HB-co-3HV). In this study, 10 bacteria which were responsible for the biodegradation of P(3HB) and P(3HB-co-3HV) film were isolated and identified from the various places studied under the tropical environment. They were Bacillus sp. FAAC-2202, Enterobacter sp. FAAC-2207, Bacillus sp. FAAC-2209 and Proteus sp. FAAC-2203 obtained from activated sludge, Bacillus sp. FAAC-2201 and Alcaligenes sp. FAAC-2210 from soil, Alcaligenes sp. FAAC-2205, Micrococcus sp. FAAC-2206 and Pseudomonas sp. FAAC-2208 from lake water and Proteus sp. FAAC-2204 from Indian Ocean sea water.  相似文献   

19.
We describe the characterization of polyhydroxyalkanoate (PHA)-producing bacteria isolated from an ammunition-polluted soil in Kitakyushu City, Japan. Over 270 strains were evaluated for PHA accumulation based on a colony staining method using Nile red. Of these, nine strains were selected based on the intensity of Nile red fluorescence and the cells were quantitatively analyzed for PHA by gas chromatography. PHA accumulation was observed in five strains, all of which are inferred to be close to the Bacillus cereus group according to 16S rDNA sequence analysis. Interestingly, these strains produced a PHA copolymer, poly(3-hydroxybutyrae-co-3-hydroxyvalerate) [P(3HB-co-3HV)], with a 3HV fraction up to 2 mol% with glucose as a carbon source. Further characterization was performed on one isolate, B. cereus YB-4. Gel permeation chromatography analysis revealed that the number of average molecular weights of PHA accumulated in B. cereus YB-4 drastically changed from 722,000 to 85,000 over a 72-h cultivation period. Furthermore, the PHA synthase genes were cloned and the deduced amino acid sequences were determined. This study provides new insights into PHA biosynthesis by members of the B. cereus group.  相似文献   

20.
Dynamic tensile modulus and X-ray scattering measurements were made for a series of bacterially produced poly--hydroxybutyrate/-hydroxyvalerate (PHB/HV) random copolymers. The position of the primary relaxation is shifted to lower temperatures by increasing HV content and the material becomes generally softer. Drawn PHB/ 17% HV copolymer shows conventional mechanical anisotropy. Results are presented comparing the dynamic mechanical behaviour of isotropic PHB/HV with that of conventional thermoplastics such as polyethylene terephthalate, isotactic polypropylene and polyethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号