首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.

To understand the nonlinear dynamical behaviour of a one-dimensional pulsating detonation, results obtained from numerical simulations of the Euler equations with simple one-step Arrhenius kinetics are analysed using basic nonlinear dynamics and chaos theory. To illustrate the transition pattern from a simple harmonic limit-cycle to a more complex irregular oscillation, a bifurcation diagram is constructed from the computational results. Evidence suggests that the route to higher instability modes may follow closely the Feigenbaum scenario of a period-doubling cascade observed in many generic nonlinear systems. Analysis of the one-dimensional pulsating detonation shows that the Feigenbaum number, defined as the ratio of intervals between successive bifurcations, appears to be in reasonable agreement with the universal value of d = 4.669. Using the concept of the largest Lyapunov exponent, the existence of chaos in a one-dimensional unsteady detonation is demonstrated.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
In this work, we explore the effect of initial density variation in the combustible mixture on the nonlinear dynamics of one-dimensional gaseous detonation propagation. Studies of nonlinear dynamical behavior of one-dimensional pulsating detonation are frequently based upon the reactive Euler simulations with one-step Arrhenius chemistry. In regions of the control parameters space, i.e., activation energy Ea, the 1-D detonation dynamics are shown to exhibit chaotic behavior at values of 28.5 and 30.0. Using small sinusoidal initial density perturbations, this investigation shows the emergence of various nonlinear temporal patterns as a function of the perturbation wavelength. It demonstrates that the cooperative behavior between the intrinsic instability and imposed small perturbation can lead to regularization of chaotic oscillations in one-dimensional gaseous pulsating detonation. Hence, by means of a small perturbation, an otherwise chaotic motion is rendered more stable and predictable. This result thus has implications for how intrinsically unstable detonation dynamics can be controlled.  相似文献   

17.
Shear flow dynamics described by the two-dimensional incompressible Navier-Stokes equations is studied for a one-dimensional equilibrium vorticity profile having two minima. These lead to two linear Kelvin-Helmholtz instabilities; the resulting nonlinear waves corresponding to the two minima have different phase velocities. The nonlinear behavior is studied as a function of two parameters, the Reynolds number and a parameter lambda specifying the width of the minima in the vorticity profile. For parameters such that the instabilities grow to a sufficient level, there is Lagrangian chaos, leading to mixing of vorticity, i.e., momentum transport, between the chains of vortices or cat's eyes. Lagrangian chaos is quantified by plotting the finite time Lyapunov exponents on a grid of initial points, and by the probability distribution of these exponents. For moderate values of lambda, there is Lagrangian chaos everywhere except near the centers of the vortices and near the boundaries, and there are competing effects of homogenization of vorticity and formation of structures associated with secondary resonances. For smaller values of lambda Lagrangian chaos occurs in the regions in the centers of the vortices, and the Eulerian behavior of the flow undergoes bifurcations leading to Eulerian chaos, as measured by the time series of several Galilean invariant quantities. A discussion of Lagrangian chaos and its relation to Eulerian chaos is given.(c) 2001 American Institute of Physics.  相似文献   

18.
M S Sriram  J Segar 《Pramana》1997,48(1):205-229
Nonlinear effective Lagrangian models with a chiral symmetry have been used to describe strong interactions at low energy, for a long time. The Skyrme model and the chiral quark-meson model are two such models, which have soliton solutions which can be identified with the baryons. We describe the various kinds of soliton states in these nonlinear models and discuss their physical significance and uses in this review. We also study these models from the view point of classical nonlinar dynamical systems. We consider fluctuations around theB=1 soliton solutions of these models (B, being the baryon number) and solve the spherically symmetric, time-dependent systems. Numerical studies indicate that the phase space around the Skyrme soliton solution exhibits spatio-temporal chaos. It is remarkable that topological solitons signifying stability/order and spatio-temporal chaos coexist in this model. In contrast with this, the soliton of the quark-meson model is stable even for large perturbations.  相似文献   

19.
We present evidence for chaotic behavior in n-InSb. The Hall voltage exhibits a period-doubling route to chaos as the (non-ohmic) dc current is increased. The nonlinear oscillation and bifurcation processes are strongly influenced by irradiation with CO2 laser radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号