首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用DSC法研究了聚苯醚(PPO)、羧化度为16.0mol%的羧化PPO(C-PPO)和相应的C-PPO的正十二酯(Et-CPPO)在稍低于玻璃化转变温度等温退火的热焓松弛行为,讨论改性基团对热焓松弛速率的影响。发现三种样品在等温退火过程中产生的吸热峰随退火时间或温度的增加而增加。在相同退火条件下,峰宽随侧基链加长而增加,热焓松弛速率降低。  相似文献   

2.
用DSC分别探讨了苯酰化聚苯醚(PPO)(BA~(31.0)-PPO和BA~(43.4)-PPO)/PPO共混体系的热焓松弛变化规律与差异.发现已知是相容体系的BA~(31.0)-PPO/PPO在低于T_g等温退火过程中只出现一个吸热峰;典型的相容体系PPO/PS也表现出类似的行为.而未知相容性的BA~(43.4)-PPO/PPO在等温退火过程中出现两个吸热峰,此两峰的T_p值随退火时间的变化类似于各纯组分相应条件下的变化.电子显微镜结果表明,BA~(43.4)-PPO/PPO是相分离体系.因此对T_g非常接近的较刚性主链的PP0及其改性物的共混体系可用热焓松弛行为确定其相容性.  相似文献   

3.
T_g以下温度退火对无规聚苯乙烯性能的影响   总被引:2,自引:0,他引:2  
用调幅式DSC等新技术研究了物理老化对无规聚苯乙烯多种性能的影响.随着老化时间的延长,试样的玻璃化转变温度、热焓松弛、峰温、峰高和热焓提高;老化使材料的初始模量,屈服应力和断裂强度都有不同程度的提高;使样品的溶剂扩散速率降低,但对样品的密度和声传播速度几乎没有影响.以上这些结果可从物理老化引起试样中凝聚缠结增加的观点来进行解释.  相似文献   

4.
研究了聚芳醚酮在200℃下长时间放置过程中的密度,热焓,屈服及应力松弛行为随时间的变化规律.结果表明,随放置时间的增长,材料的结构形态与物性随时间的变化速率在10小时后急剧减慢.文中对物性变化的时间依赖性进行了讨论.在应力松弛过程中出现银纹的现象可归结为物理老化过程中分子链间排列逐渐紧密的结果.  相似文献   

5.
尼龙1010结晶与熔融行为的研究   总被引:3,自引:1,他引:3  
用DSC研究了降温速率R对尼龙10 10结晶与熔融的影响,以及室温(RT)和液氮(LN)骤冷退火样品的熔融.降温时结晶温度随R增大线性降低;T_g以上可完成结晶时结晶度相同;结晶起始温度>181℃生成的晶体有三个熔融峰,对应于环状和放射状球晶的转化与熔融;在181℃和T_g间结晶,无放射球晶转化峰;T_g下有结晶放热峰样品加热时有冷结晶发生.RT未退火样品三个熔融峰,退火温度T_α≥180℃样品两个峰,结晶度C∝T_a;LN未退火样品单一熔融峰,T_a>160℃双峰,T_a≤160℃三峰,低温峰温与C均∝T.  相似文献   

6.
本文用DSC和密度法研究了高卷速拉伸变形丝(DTY)的熔化与结晶行为。定量地测定了不同温度迟火5分钟急冷后的试样,在DSC曲线上出现的各转变峰温和热焓随退火温度变化的规律,找到了DSC测定的熔化热焓和密度法测定的结晶度之间的对应关系。从试样在熔化峰温退火→冷却结晶→再扫描和在熔化峰温→继续扫描两种方式在DSC曲线上所表现的熔化与结晶行为,探讨了试样在熔融状态退火冷却结晶后再扫描出现双熔化峰的原因,继而研究了试样在熔化峰温的退火时间对结晶完善程制的影响。  相似文献   

7.
利用DSC技术考察了无定形山梨醇体系的焓松弛行为, 在10 K•min-1的升温速率下测定了经历不同降温速率(0.5~20 K•min-1)的山梨醇在玻璃化转变(Tg)前后的比热容[cp(T)]. 利用基于位形熵演变的焓松弛现象学模型(GR模型)模拟了实验数据. 不论是否假设松弛过程存在一个亚稳极限态, 模型参数均能很好地重现经历不同热历史体系的升温cp(T)曲线. 在物理意义明确的模型参数组中, 除了非指数参数随降温速率的增加而增加外, 其余均不随热历史的变化而变化. 拟合较低降温速率下cp(T)曲线获得的GR模型参数的预测力明显好于在较大降温速率下获得的结果. 由于松弛时间对拟合过程中选择的“固定参数”的取值很敏感, 因此模型能否预测体系的比热容不能看成确定松弛时间的唯一依据. 在利用GR模型分析无定形山梨醇体系的脆度时, 如果选择极限假想温度作为Tg, 会导致计算结果明显小于文献值.  相似文献   

8.
本文用DSC首先论证淬火尼龙1010试样在DSC曲线上出现的放热峰是冷结晶峰,然后研究淬火尼龙1010在不同热处理条件下,冷结晶峰和玻璃态热松驰峰的变化规律。实验结果表明,等温结晶时间较短,试样的固态结晶速率较快;等温结晶时间较长,固态结晶速率较慢,这可能与在Tg区域等温所形成的新氢键有关。当升高等温温度时,固态结晶速率加快。在低于Tg的不同温度退火,玻璃态热松弛峰的峰高及热焓在281K达最大值,进而确定对玻璃态热松驰影响最敏感的温度区间是277~284K。  相似文献   

9.
本文用DSC技术研究了物理老化对PEK-C、PES-C及其共混物和复合材料玻璃化转变的影响.老化时间(t)延长,玻璃化转变温度(T_g)、热焓松弛峰温(T_(max))、峰高(△C_(pmax))和热焓(△H)提高;△H与lgt成线性关系.碳黑或碳纤维对PES-C的物理老化行为无影响,而反应性乙炔端基砜(ATS)固化物能限制PEK-C和PES-C在T_g以下温度的物理老化过程.利用物理老化能更为方便地判断多相体系的相容性,结果表明PEK-C/PSF为相容体系,而PEK-C/PES-C相容性较差.  相似文献   

10.
为了考察木糖醇的玻璃化转变和焓松弛行为,寻求碳链长度对线性多元醇玻璃化转变和焓松弛行为的影响,利用差示扫描量热(DSC)技术测定了不同降温速率下木糖醇在玻璃化转变温度(Tg)前后的比热容(Cp),通过曲线拟合获得了TNM(Tool-Narayanaswamy-Moynihan)模型参数,并和其他多元醇类已有研究结果进行对照.结果表明,尽管TNM模型可以很好地重现不同降温速率体系的实验比热容数据,但模型参数并不是材料常数,而是和热历史有关,不同的降温速率对应不同的模型参数.指前因子(A)、非线性参数(x)和非指数参数(β)均随着降温速率的增加而降低,松弛活化焓(△h*)的变化趋势刚好相反.几种线性多元醇玻璃化转变和TNM模型参数的对照表明,玻璃化转变温度,松弛活化焓和动力学脆度(m)都随着烷基碳链长度的增加而增加.虽然非线性参数、非指数参数随碳链长度的增加有降低的趋势,但木糖醇展现出反常变化的情形.  相似文献   

11.
Structural change in an unoriented, amorphous PET film annealed at temperatures below T_gand the effect of excess enthalpy relaxation on permeation rates of CO_2 gas and toluene liquid intreated samples have been studied. The results suggest that the amount of excess enthalpy relaxa-tion as determined from the endothermic peak in T_g interval, the T_g and density all increase withannealing time, but the trans-conformation component of samples decreases. No change of struc-ture in the amorphous phase was found other than the normal densification of the molecular chainpacking or a reduction in free volume had occurred during the annealing regimes. Therefore, thepermeation rate of CO_2 gas in treated samples reduced. While the apparent permeation rate oftoluene liquid increased with annealing time because of a creation of extensive cracks at film surfacearising from both the increase in embrittlement of polymer and the swelling action of toluene liquidon treated samples.  相似文献   

12.
The changes which take place on annealing rigid PVC in the vicinity of the glass transition have been followed by differential scanning calorimetry. The changes appear as an increase in the glass-transition temperature and a decrease in the enthalpy with time of annealing. For annealing at 75°C, the enthalpy after 50–100 hr approaches the value characteristic of the equilibrium liquid state. The results obtained for annealing at 65°C and 75°C are in accord with those expected for the relaxation of an amorphous material, and are at variance with those expected on the basis of crystallization taking place on annealing. The enthalpy relaxation process is characterized by a distribution of activation energies centered about 18.8 kcal mole?1, and seems to reflect a multiplicity of molecular processes.  相似文献   

13.
叶斌  高才  刘向农  杨锁  江斌 《物理化学学报》2011,27(5):1031-1038
采用差示扫描量热法(DSC)测定山梨醇样品经历不同时间(ta)等温退火后, 以10 K·min-1速率进行升温时玻璃化转变温度(Tg)前后的比热容(Cp(T)). 将Gómez Ribelles (GR)提出的一种基于构型熵的现象学模型用于描述山梨醇玻璃的焓松弛行为, 考察GR模型能否适用于小分子玻璃体系. 结果表明, 单组GR模型参数拟合的曲线均能较好重现对应热历史条件下的山梨醇体系的实验所得Cp(T)曲线, 尽管并未找到不随热历史而变的一组参数作为材料常数, 但与其它现象学模型应用于小分子玻璃时, 其模型参数都随热历史变化而变化的特点相比, GR模型的某些参数基本保持不变. 且在较长退火时间下拟合得到的模型参数普适性较好. 同经历连续降温的山梨醇相比, 等温退火过程得到的松弛极限态参数(δ)的平均值与Tg处比热容增量(ΔCp(Tg))的比值明显增大, 但仍小于聚合物的值, 表明GR模型提出的亚稳极限态对小分子玻璃的影响值得商榷.  相似文献   

14.
Differential scanning calorimetry (DSC) and cryomicroscopy were employed to investigate the glass transition and enthalpy relaxation behaviors of ethylene glycol (EG) and its aqueous solution (50% EG) with different crystallization percent. Isothermal crystallization method was used in devitrification region to get different crystallinity after samples quenched below glass transition temperature. The DSC thermograms upon warming showed that the pure EG has a single glass transition, while the 50% EG solution has two if the solution crystallized partially. It is believed that the lower temperature transition represents the glass transition of bulk amorphous phase of EG aqueous solution glass state, while the higher one is related to ice inclusions, whose mobility is restricted by ice crystal. Cryomicroscopic observation indicated that the EG crystal has regular shape while the ice crystal in 50% EG aqueous solution glass matrix has no regular surface. Isothermal annealing experiments at temperatures lower than Tg were also conducted on these amorphous samples in DSC, and the results showed that both the two amorphous phases presented in 50% EG experience enthalpy relaxation. The relaxation process of restricted amorphous phase is more sensitive to annealing temperature.  相似文献   

15.
Proton spin–spin relaxation times and the Weibull coefficient have been measured as functions of temperature for poly(ethylene terephthalate) (PET) drawn at 50°C in both the amorphous and the semicrystalline (50%) states. Two relaxation times T2a (long) and T2c (short) are observed for all samples. They are ascribed, respectively, to the relaxation of the amorphous and of the crystalline components including highly strained noncrystalline segments. Effects of initial morphology are found for chain mobility in the noncrystalline regions and for the crystal perfection, evaluated from T2a and the Weibull coefficient μc of the T2c-component, respectively. For all draw ratios, T2a for extrudates prepared from the semicrystalline polymer (C-50) is short compared to that for preparations from the amorphous (A-50) polymer. In the A-50 samples, the perfection of stress-induced crystals increase with increasing draw ratio. In the C-50 samples, the crystal orientation increases, whereas the perfection decreases with increasing draw ratio. To improve the crystal perfection, annealing at higher temperature or longer time is required for C-50 as compared with A-50. The value of μc correlates well with the change in crystal perfection during deformation and annealing.  相似文献   

16.
The physical aging behavior of an isotropic amorphous polyimide possessing a glass transition temperature of approximately 239°C was investigated for aging temperatures ranging from 174 to 224°C. Enthalpy recovery was evaluated as a function of aging time following sub‐Tg annealing in order to assess enthalpy relaxation rates, and time‐aging time superposition was employed in order to quantify mechanical aging rates from creep compliance measurements. With the exception of aging rates obtained for aging temperatures close to Tg, the enthalpy relaxation rates exhibited a significant decline with decreasing aging temperature while the creep compliance aging rates remained relatively unchanged with respect to aging temperature. Evidence suggests distinctly different relaxation time responses for enthalpy relaxation and mechanical creep changes during aging. The frequency dependence of dynamic mechanical response was probed as a function of time during isothermal aging, and failure of time‐aging time superposition was evident from the resulting data. Compared to the creep compliance testing, the dynamic mechanical analysis probed the shorter time portion of the relaxation response which involved the additional contribution of a secondary relaxation, thus leading to failure of superposition. Room temperature stress‐strain behavior was also monitored after aging at 204°C, with the result that no discernible embrittlement due to physical aging was detected despite aging‐induced increases in yield stress and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1931–1946, 1999  相似文献   

17.
Oxygen permeability and the free‐volume hole size (cavity size) of ethylene‐vinylalcohol copolymers (EVOH) indicate abnormal humidity dependence, that is, they have minimum values in the range of around 20–40% RH, not showing a monotonic increase with humidity. To clarify this abnormal phenomenon, we investigated its molecular mobility and amorphous structure change by means of solid‐state NMR and temperature‐modulated differential scanning calorimetry (TMDSC). The glass transition temperature (Tg) decreased with humidity. Specimens stored at 15–60% RH showed large enthalpy relaxation, and it was found that the amorphous structure became more compact and the molecular conformation became more stable by ageing within this range of humidity. Under these conditions, solid‐state NMR measurement showed a component with intermediate relaxation time in the amorphous region. The results obtained by TMDSC and solid‐state NMR showed a reduction in molecular mobility by densifying in the amorphous region under the condition of 15–60% RH. The fact that the oxygen permeability and the cavity size of EVOH indicate minimum values at low humidity are attributed to the reduction in molecular mobility by enthalpy relaxation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1181–1191, 2009  相似文献   

18.
The first experimental evidence of the existence of the rigid amorphous fraction (RAF) was reported by Menczel and Wunderlich for several semicrystalline polymers. It was observed that the hysteresis peak at the glass transition was absent when these polymers were heated much faster than they had previously been cooled. In the glass transition behavior of poly(ethylene terephthalate) (PET), the hysteresis peak gradually disappeared as the crystallinity increased. At the same time, it was noted that the ΔC p of higher crystallinity PET samples was much smaller than could be expected on the basis of the crystallinity calculated from the heat of fusion. It was also observed that this behavior was not unique to PET only, but is characteristic of most semicrystalline polymers: the sum of the crystallinity calculated from the heat of fusion and the amorphous content calculated from the ΔC p at the glass transition is much less than 100% (a typical difference is ~20–30%). This 20–30% difference was attributed to the existence of the “RAF”. The presence of the RAF also affected the unfreezing behavior of the “mobile (or traditional) amorphous fraction.” As a consequence, the phenomenon of the enthalpy relaxation diminished with increasing rigid amorphous content. It was suggested that the disappearance of the enthalpy relaxation was caused by the disappearance or drastic decrease of the time dependence of the glass transition. To check the validity of this suggestion, the glass transition had to be also measured on cooling in order to overlay it on the DSC curves measured on heating. However, before this overlaying work could be accomplished, the exact temperatures on cooling had to be determined since the temperature of the DSC instruments that time could not be calibrated on cooling using the usual low molecular weight standards due to the common phenomenon of supercooling. Therefore, a temperature calibration method needed to be developed for cooling DSC experiments utilizing high purity liquid crystals using the isotropic → nematic, the isotropic → cholesteric, and other liquid crystal → liquid crystal transitions. After the cooling calibration was accomplished, the cooling glass transition experiments indicated that the glass transition in semicrystalline polymers is not completely time independent, because its width depends on the ramp rate. However, it was shown that the time dependence is drastically reduced, and the midpoint of the glass transition seems to be constant which can explain the absence of the enthalpy relaxation. The work presented here has led to a number of studies showing the universality of the rigid amorphous phase for semicrystalline polymers as well as an ASTM standard for DSC cooling calibration.  相似文献   

19.
Summary Low density polyethylene film is drawn at room temperature four times the original length and subjected to thermal annealing at 60, 80, and 100 °C keeping the film length constant. Long spacing measured by SAXS increased with increasing temperature of annealing; the increase of the long spacing is presumed to be due to the decrease of the number of micelles through relaxation during the annealing. Simultaneous measurement of the changes of the long spacing and the film length by stretching is carried out and stress-extension curves are obtained. The values of the initial moduli of the long spacingE 1 and the film lengthY are very near to each other. Elastic modulus of the crystal latticeE c is known to be 235 GN/m2 and that of the amorphous regionE a is found to be 0.15 GN/m2. When higher stress is applied than in the case of the initial modulus, the percentage of extension of film is much greater than that of the long spacing. The discrepancy is explained by the increase of the number of micelles through stress crystallization.Dedicated to Professor Dr. K. Ueberreiter on the occasion of his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号