共查询到11条相似文献,搜索用时 15 毫秒
1.
采用QCISD和MP2两种计算方法,在6-31++G(d,p)的基组下,对气相中呋喃负离子与N2O反应的微观机理进行了较为系统的计算研究。结果表明,通道1中的路径1和2为此反应体系的主反应路径,其各反应驻点的能量均低于反应物的,并且互为竞争路径。主要产物为C4H3NO- 和NO,同时也应能检测到少量的C4H3O2- 和N2。理论计算结果与实验预测基本一致。此外,对于次要路径也做了简要说明,并且此反应体系的所有反应路径均为强放热过程。 相似文献
2.
Isotropic and anisotropic magnetizabilities for noble gas atoms and a series of singlet and triplet molecules were calculated using the second‐order Douglas‐Kroll‐Hess (DKH2) Hamiltonian containing the vector potential A and in part using second‐order generalized unrestricted Møller‐Plesset (GUMP2) theory. The DKH2 Hamiltonian was resolved into three parts (spin‐free terms, spin‐dependent terms, and magnetic perturbation terms), and the magnetizabilities were decomposed into diamagnetic and paramagnetic terms to investigate the relativistic and electron‐correlation effects in detail. For Ne, Kr, and Xe, the calculated magnetizabilities approached the experimental values, once relativistic and electron‐correlation effects were included. For the IF molecule, the magnetizability was strongly affected by the spin‐orbit interaction, and the total relativistic contribution amounted to 22%. For group 17, 16, 15, and 14 hydrides, the calculated relativistic effects were small (less than 3%), and trends were observed in relativistic and electron‐correlation effects across groups and periods. The magnetizability anisotropies of triplet molecules were generally larger than those of similar singlet molecules. The so‐called relativistic‐correlation interference for the magnetizabilities computed using the relativistic GUMP2 method can be neglected for the molecules evaluated, with exception of triplet SbH. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 相似文献
3.
Distasio RA Steele RP Rhee YM Shao Y Head-Gordon M 《Journal of computational chemistry》2007,28(5):839-856
We present a new algorithm for analytical gradient evaluation in resolution‐of‐the‐identity second‐order Møller‐Plesset perturbation theory (RI‐MP2) and thoroughly assess its computational performance and chemical accuracy. This algorithm addresses the potential I/O bottlenecks associated with disk‐based storage and access of the RI‐MP2 t‐amplitudes by utilizing a semi‐direct batching approach and yields computational speed‐ups of approximately 2–3 over the best conventional MP2 analytical gradient algorithms. In addition, we attempt to provide a straightforward guide to performing reliable and cost‐efficient geometry optimizations at the RI‐MP2 level of theory. By computing relative atomization energies for the G3/99 set and optimizing a test set of 136 equilibrium molecular structures, we demonstrate that satisfactory relative accuracy and significant computational savings can be obtained using Pople‐style atomic orbital basis sets with the existing auxiliary basis expansions for RI‐MP2 computations. We also show that RI‐MP2 geometry optimizations reproduce molecular equilibrium structures with no significant deviations (>0.1 pm) from the predictions of conventional MP2 theory. As a chemical application, we computed the extended‐globular conformational energy gap in alanine tetrapeptide at the extrapolated RI‐MP2/cc‐pV(TQ)Z level as 2.884, 4.414, and 4.994 kcal/mol for structures optimized using the HF, DFT (B3LYP), and RI‐MP2 methodologies and the cc‐pVTZ basis set, respectively. These marked energetic discrepancies originate from differential intramolecular hydrogen bonding present in the globular conformation optimized at these levels of theory and clearly demonstrate the importance of long‐range correlation effects in polypeptide conformational analysis. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 相似文献
4.
S. N. Derrar M. Sekkal‐Rahal K. Guemra P. Derreumaux 《International journal of quantum chemistry》2012,112(15):2735-2742
The B3LYP functional combined with 6‐31G(d) basis set have been designated as the most appropriate for structural investigations of a new range of organic conjugated push–pull molecules containing numerous electron donor/acceptor couples in their ends. Second‐order Møller Plesset has been used to properly reproduce nonlinear optical (NLO) properties and to study the alkyl chain length effect of these systems. Satisfactory dynamic hyperpolarizabilities at the wavelength 1064 nm are obtained with values in the order of 11,500 × 10?30 esu. Then, the study has been extended to monomers generated by combination of the chromophores to either acryloyl chloride or 4‐hydroxy‐styrene sequences. Then, the obtained molecules have been grafted to a methyl methacrylate copolymeric chain, the resulting values of β(1064 nm) have been demonstrated to be sensitive to these modifications. © 2012 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献
5.
Yutaka Imamura Takeshi Baba Hiromi Nakai 《International journal of quantum chemistry》2008,108(8):1316-1325
Natural bond orbital‐based energy density analysis (NBO‐EDA), which split energies into atomic and bonding contributions, is proposed for correlated methods such as coupled‐cluster singles and doubles (CCSD) and second‐order Møller–Plesset (MP2) perturbation. Applying NBO‐EDA for CCSD and MP2 to ethylene and the Diels–Alder reaction, we are successful in obtaining useful knowledge regarding electron correlation of π‐ and σ‐type orbitals, and clarifying the difference of the reaction barriers and heat of reaction calculated by CCSD and MP2. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 相似文献
6.
Density‐functional theory method (DFT) B3LYP/6–311++G(3df,2pd) and Moller‐Plesset perturbation method (MP2) MP2/6–311++G(3df,2pd) of Gaussian 03 were selected for the theoretical study of weakly bound CO2—HF complex. In addition to the well‐known linear structure, the various bent structure complexes were also found in this work. The self‐consistent energy differences were only around 0.02 kJ/mol between the bent structure and linear structure by comparison. From the results of H‐bonding distance, dHF elongation and red shift of VHF vibration frequency, all the evidence shows that the H‐bonding effect in the bent structure is stronger than the linear structure. However, if one compares the Gibbs energy of the complex formation by temperature variation, it is very easily found that the linear form is favored under the thermal conditions of most temperatures whenever T ≥ 40 K. Such a fact is consistent with the former spectroscopic observed result of Klemperer et al. 相似文献
7.
A new four‐dimensional intermolecular potential energy surface for CS2 dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center‐of‐mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller–Plesset second‐order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug‐cc‐pVxZ, x = D, T) and corrected for the basis‐set superposition error using the full counterpoise correction method. A two‐point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole–dipole dispersion coefficient (C6) of CS2 fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well‐known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol?1 at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011. 相似文献
8.
Michio Katouda Akira Naruse Yukihiko Hirano Takahito Nakajima 《Journal of computational chemistry》2016,37(30):2623-2633
A new parallel algorithm and its implementation for the RI‐MP2 energy calculation utilizing peta‐flop‐class many‐core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual‐level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi‐node and multi‐GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi‐node and multi‐GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. © 2016 Wiley Periodicals, Inc. 相似文献
9.
A two‐level hierarchical parallelization scheme including the second‐order Møller–Plesset perturbation (MP2) theory in the divide‐and‐conquer method is presented. The scheme is a combination of coarse‐grain parallelization assigning each subsystem to a group of processors, with fine‐grain parallelization, where the computational tasks for evaluating MP2 correlation energy of the assigned subsystem are distributed among processors in the group. Test calculations demonstrate that the present scheme shows high parallel efficiency and makes MP2 calculations practical for very large molecules. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
10.
《Journal of computational chemistry》2018,39(14):839-843
The ClH⋯FH and FH⋯ClH configurations of the mixed HF/HCl dimer (where the donor⋯acceptor notation indicates the directionality of the hydrogen bond) as well as the transition state connecting the two configurations have been optimized using MP2 and CCSD(T) with correlation consistent basis sets as large as aug‐cc‐pV(5 + d)Z. Harmonic vibrational frequencies confirmed that both configurations correspond to minima and that the transition state has exactly one imaginary frequency. In addition, anharmonic vibrational frequencies computed with second‐order vibrational perturbation theory (VPT2) are within 6 cm−1 of the available experimental values and deviate by no more than 4 cm−1 for the complexation induced HF frequency shifts. The CCSD(T) electronic energies obtained with the largest basis set indicate that the barrier height is 0.40 kcal mol−1 and the FH⋯ClH configuration lies 0.19 kcal mol−1 below the ClH⋯FH configuration. While only modestly attenuating the barrier height, the inclusion of either the harmonic or anharmonic zero‐point vibrational energy effectively makes both minima isoenergetic, with the ClH⋯FH configuration being lower by only 0.03 kcal mol−1. © 2018 Wiley Periodicals, Inc. 相似文献