首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, for the first time, headspace (HS) single‐drop microextraction and simultaneous derivatization followed by GC‐MS was developed to determine the aliphatic amines in tobacco samples. In the HS extraction procedure, the mixture of derivatization reagent and organic solvent was employed as the extraction solvent for HS single‐drop microextraction and in situ derivatization of aliphatic amine in the samples. Fast extraction and simultaneous derivatization of the analytes were performed in a single step, and the obtained derivatives in the microdrop extraction solvent were analyzed by GC‐MS. The optimized experiment conditions were: sample preparation temperature of 80°C and time of 30 min, HS extraction solvent (the mixture of benzyl alcohol and 2,3,4,5,6‐pentafluorobenzaldehyde) volume of 2.0 μL, extraction time of 90 s. With the optimal conditions, the method validations were also studied. The method has good linearity (R2 more than 0.99), accepted precision (RSD less than 13%), good recovery (98–104%) and low limit of detection (0.11–0.97 μg/g). Finally, the proposed technique was successfully applied to the analyses of aliphatic amines in tobacco samples of seven different brands. It was further demonstrated that the proposed method offered a simple, low‐cost and reliable approach to determine aliphatic amines in tobacco samples.  相似文献   

2.
A single‐drop microextraction (SDME) method followed by in‐syringe derivatization and GC‐MS determination has been developed for analysis of five parabens, including methyl, ethyl, isopropyl, n‐propyl and n‐butyl paraben in water samples and cosmetic products. N,O‐Bis(trimethylsilyl)acetamide (BSA) was used as derivatization reagent. Derivatization reaction was performed inside the syringe barrel using 0.4 μL of BSA. Parameters that affect the derivatization yield such as temperature and time of the reaction were studied. In addition, experimental SDME parameters such as selection of organic solvent, addition of salt, extraction time and extraction temperature were investigated and optimized. The RSD of the method for aqueous samples varied from 8.1 to 13%. The LODs ranged from 0.001 (n‐butyl paraben) to 0.015 (methyl paraben) μg/L, and the enrichment factors were between 23 and 150.  相似文献   

3.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, the novel technique based on headspace single‐drop microextraction with in‐syringe derivatization followed by GC‐MS was established to determine the volatile organic acids in tobacco. The parameters for headspace single‐drop microextraction and in‐syringe derivatization were optimized, including extraction time, and volume of derivatization reagent and in‐syringe derivatization time. The method validations including linearity, precision, recovery and LOD were also studied. The obtained results illustrated that the optimized technique was easy, highly efficient and sensitive. Finally, the proposed method was successfully applied to the analyses of volatile organic acids in tobacco samples with seven different brands. It was further demonstrated that the present technique developed in this study does offer a simple and fast approach to determine volatile organic acids in tobacco.  相似文献   

5.
A sensitive GC–MS method has been established for the determination of acrylamide in surface and drinking water based on derivatization with xanthydrol. Deuterated acrylamide (acrylamide‐d3) was chosen as the internal standard for analyzing the water sample. The derivatization of acrylamide was performed directly in water, and the best reaction conditions (xanthydrol of 1.6 mM, HCl concentration of 0.05 M, reaction for 30 min at ambient temperature) were established by variation of parameters. Under the established conditions, the detection and quantification limits were 3.0 and 9.7 ng/L, respectively, and the interday RSD was less than 8% at concentrations of 20 and 100 ng/L.  相似文献   

6.
One of the many issues of designer drugs of abuse like synthetic cannabinoids (SCs) such as JWH‐018 is that details on their metabolism has yet to be fully elucidated and that multiple metabolites exist. The presence of isomeric compounds poses further challenges in their identification. Our group has previously shown the effectiveness of gas chromatography‐electron ionization‐tandem mass spectrometry (GC‐EI‐MS/MS) in the mass spectrometric differentiation of the positional isomers of the naphthoylindole‐type SC JWH‐081, and speculated that the same approach could be used for the metabolite isomers. Using JWH‐018 as a model SC, the aim of this study was to differentiate the positional isomers of its hydroxyindole metabolites by GC‐MS/MS. Standard compounds of JWH‐018 and its hydroxyindole metabolite positional isomers were first analyzed by GC‐EI‐MS in full scan mode, which was only able to differentiate the 4‐hydroxyindole isomer. Further GC‐MS/MS analysis was performed by selecting m/z 302 as the precursor ion. All four isomers produced characteristic product ions that enabled the differentiation between them. Using these ions, MRM analysis was performed on the urine of JWH‐018 administered mice and determined the hydroxyl positions to be at the 6‐position on the indole ring. GC‐EI‐MS/MS allowed for the regioisomeric differentiation of the hydroxyindole metabolite isomers of JWH‐018. Furthermore, analysis of the fragmentation patterns suggests that the present method has high potential to be extended to hydroxyindole metabolites of other naphthoylindole type SCs in identifying the position of the hydroxyl group on the indole ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
1‐Triacontanol (TA), a member of long chain fatty alcohol, has recently been received great attention owing to its antitumor activity. In this study, an accurate, sensitive and selective gas chromatography–tandem mass spectrometry method was developed and validated for the quantification of TA in beagle plasma using 1‐octacosanal as the internal standard (IS) for the first time. With temperature programming, chromatographic separation was carried out on an HP‐5MS column, using helium as carrier gas and argon as collision gas, both at a flow rate of 1 mL/min. TA was analyzed using positive ion electrospray ionization in multiple‐reaction monitoring mode, with the precursor to product ion transitions of m/z 495.6 → 97.0 and m/z 467.5 → 97.0 for TA and the IS, respectively. The lower limit of quantitation, linearity, intra‐ and interday precision, accuracy, stability, extraction recovery and matrix effect of TA were within the acceptable limits. The validated method was successfully applied to a pharmacokinetic study of TA in beagles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
张素艳  耿昱  郭寅龙  王浩  吕龙 《中国化学》2005,23(7):870-874
High performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) have been utilized to analyze the synthesized 2-(2-arylaminomethylphenoxy)pyrimidine derivatives, which are a new kind of environmentally benign herbicides and have passed the temporary pesticide registration. The identification of main product and impurities has been achieved according to the UV and mass spectra. Moreover, one impurity, introduced by the raw material in the last step of the synthetic route, was identified by GC-MS analysis. It can be concluded that the combination of chromatography and mass spectrometry, including LC-MS and GC-MS, provided a vital tool of the pesticide science.  相似文献   

9.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a rapid and sensitive analytical method for the determination of methyl‐, ethyl‐, propyl‐, and butyl esters of para‐hydroxy benzoic acid (parabens) in personal care products was developed and fully validated. Test portions were extracted with methanol followed by vortexing, sonication, centrifugation, and filtration without derivatization. The four parabens were quantified by GC‐MS/MS in the electron ionization mode. Four corresponding isotopically labeled parabens were selected as internal standards, which were added at the beginning of the sample preparation and used to correct for recovery and matrix effects. Sensitivity, extraction efficiency, and recovery of the respective analytes were evaluated. The coefficients of determination (r2) were all greater than 0.995 for the four parabens investigated. The recoveries ranged from 97 to 107% at three spiked levels and a one‐time (single) extraction efficiency greater than 97% was obtained. This method has been applied to screen 26 personal care products. This is the first time that a unique GC‐MS/MS method with dynamic selected reaction monitoring and confirmation of analytes has been used to determine these parabens in cosmetic personal care products.  相似文献   

11.
A quantitative method for putrescine (PUT), spermidine (SPD) and spermine (SPM) in homogenized postmortem human brain tissue is described that employs a novel, simple and rapid extractive derivatization with ethylchloroformate and trifluoroacetylation. These amines are metabolites of ornithine and are metabolically interconvertible in mammals. The method was developed to support an ongoing epidemiological study correlating these amines with the frequency of suicide. The isolation methodology is robust and requires less work and time than many previous methods. Analysis is by conventional electron ionization GC‐MS with selected ion monitoring using a stable isotope‐labeled analog for PUT and a chemical analog for SPD and SPM as internal standards. The time required for chromatographic analysis, about 20 min, is determined by the wide range of the relative volatilities of the derivatized polyamines. The method allows the quantitation of PUT down to 10 ng/g and SPD and SPM down to 100 and 1000 ng/g, respectively of wet tissue. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Galanthamine‐type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC‐EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high‐resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC‐MS/MS) and accurate mass measurements (GC‐HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC‐MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine‐N‐oxide and N‐formylnorgalanthamine, the galanthamine‐type compounds showed abundant [M]+. and [M‐H]+ ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine‐type alkaloids, including 3‐O‐(2′‐butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC‐MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The metabolic profile of polar (methanol) and non‐polar (hexane) extracts of Curcuma domestica, a widely used medicinal plant, was established using various different analytical techniques, including GC‐FID, GC‐MS, HR‐GC‐MS and analytical HPLC‐ESI‐MS/MS by means of LTQ‐Orbitrap technology. The major non‐volatile curcuminoids curcumin, demethoxycurcumin and bisdemethoxycurcumin were identified when their chromatographic and precursor ion masses were compared with those of authentic standard compounds. In this paper we describe for the first time a GC/MS‐based method for metabolic profiling of the hydrophilic extract. We also identified 61 polar metabolites as TMS derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel method using vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction has been developed for the extraction of phthalate esters (PAEs) in Chinese liquor samples prior to analysis by GC–MS. In the proposed method, a high‐density extraction solvent (carbon tetrachloride) was dispersed into samples with the aid of a surfactant (Triton X‐100) and vortex agitation, resulting in a short extraction equilibrium (30 s). After centrifugation, a single microdrop of solvent was easily collected for GC–MS analysis. Key factors that affected the extraction efficiency were optimized. Under the optimum conditions, linearity was found in the range from 0.05 to 50 μg/L. Coefficients of determination varied from 0.9938 to 0.9971. LODs, based on an S/N of 3, ranged from 4.9 to 13 ng/L. Enrichment factors varied from 140 to 184. Reproducibility and recoveries were assessed by testing a series of three liquor samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied to the determination of PAEs in 16 Chinese liquor samples. In this work, high‐density‐solvent vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction was applied for the first time for the extraction of PAEs in Chinese liquor samples and was proved to be simple, rapid, and sensitive.  相似文献   

15.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

16.
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC‐CI‐MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long‐term metabolite (18‐nor‐17β‐hydroxymethyl,17α‐methyl‐androst‐1,4,13‐trien‐3‐one) could be detected up to 26 days by using GC‐CI‐MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long‐term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper outlines the possibilities of selectivity and sensitivity enhancement in measuring PCDD/F congeners using an ion trap GC‐MS/MS. The pressure of the collision gas and the collision energy were optimized. The modified GC‐MS/MS method was applied to the determination of PCDDs and PCDFs in human and fish tissues. Limits of quantification were about 1 pg/g of fat for all seventeen 2378 PCDD/Fs tested (starting amount of fat, 2 g).  相似文献   

18.
An accurate, rapid and effective method was established for determination of eugenol in plasma, muscle, skin, liver, kidney and gill of fish using gas chromatography–ion trap tandem mass spectrometry. Samples of muscle, skin, liver, kidney and gill were prepared using the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure, and a plasma sample was prepared by a liquid–liquid extraction procedure. Eugenol was monitored in <7 min using an electron‐ionization source in MS/MS mode and quantified by an internal standard of eugenol‐d3. The limit of detection was 5.0 μg/kg, and the limit of quantification was 10.0 μg/kg. The calibration curve was linear in the range of 5–1000 μg/L (R2 = 0.9996). Intra‐ and inter‐day precisions of eugenol expressed as relative standard deviation were within 9.74%, and the accuracy exhibited a relative error ranging from −2.20 to 8.89%. The developed method was successfully used to study the elimination regularity of eugenol in mandarin fish.  相似文献   

19.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

20.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号