首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a group G, write \(g \sim h\) if \(g, h \in G\) have the same order. The set of sizes of the equivalence classes with respect to this relation is called the same-order type of G; thus it is the set with numbers of elements of each order. In this article we prove that a group is isomorphic to the alternating group \(A_5\) if and only if the same-order type of G is \(\{1,pq,4p,8q\}\) with the p and q primes.  相似文献   

2.
Suppose that k is a non-negative integer and a bipartite multigraph G is the union of
$$\begin{aligned} N=\left\lfloor \frac{k+2}{k+1}n\right\rfloor -(k+1) \end{aligned}$$
matchings \(M_1,\dots ,M_N\), each of size n. We show that G has a rainbow matching of size \(n-k\), i.e. a matching of size \(n-k\) with all edges coming from different \(M_i\)’s. Several choices of the parameter k relate to known results and conjectures.
  相似文献   

3.
Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a non-zero derivation of R, F and G are two generalized derivations of R such that \(d\{F(u)u-uG^2(u)\}=0\) for all \(u\in f(R)\). Then one of the following holds:
  1. (i)
    there exist \(a, b, p\in U\), \(\lambda \in C\) such that \(F(x)=\lambda x+bx+xa^2\), \(G(x)=ax\), \(d(x)=[p, x]\) for all \(x\in R\) with \([p, b]=0\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R;
     
  2. (ii)
    there exist \(a, b, p\in U\) such that \(F(x)=ax\), \(G(x)=xb\), \(d(x)=[p,x]\) for all \(x\in R\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R with \([p, a-b^2]=0\);
     
  3. (iii)
    there exist \(a\in U\) such that \(F(x)=xa^2\) and \(G(x)=ax\) for all \(x\in R\);
     
  4. (iv)
    there exists \(a\in U\) such that \(F(x)=a^2x\) and \(G(x)=xa\) for all \(x\in R\) with \(a^2\in C\);
     
  5. (v)
    there exist \(a, p\in U\), \(\lambda , \alpha , \mu \in C\) such that \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) and \(d(x)=[p,x]\) for all \(x\in R\) with \(a^2=\mu -\alpha p\) and \(\alpha p^2+(\lambda -2\mu ) p\in C\);
     
  6. (vi)
    there exist \(a\in U\), \(\lambda \in C\) such that R satisfies \(s_4\) and either \(F(x)=\lambda x+xa^2\), \(G(x)=ax\) or \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) for all \(x\in R\).
     
  相似文献   

4.
Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, \(F\ne 0\) an b-generalized skew derivation of R, L a non-central Lie ideal of R, \(0\ne a\in R\) and \(n\ge 1\) a fixed integer. In this paper, we prove the following two results:
  1. 1.
    If R has characteristic different from 2 and 3 and \(a[F(x),x]^n=0\), for all \(x\in L\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\), the standard identity of degree 4, and there exist \(\lambda \in C\) and \(b\in Q\), such that \(F(x)=bx+xb+\lambda x\), for all \(x\in R\).
     
  2. 2.
    If \(\mathrm{{char}}(R)=0\) or \(\mathrm{{char}}(R) > n\) and \(a[F(x),x]^n\in Z(R)\), for all \(x\in R\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\).
     
  相似文献   

5.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

6.
Let K be a compact set in \( {{\mathbb R}^n} \). For \( 1 \leqslant p \leqslant \infty \), the Bernstein space \( B_K^p \) is the Banach space of all functions \( f \in {L^p}\left( {{{\mathbb R}^n}} \right) \)such that their Fourier transform in a distributional sense is supported on K. If \( f \in B_K^p \), then f is continuous on \( {{\mathbb R}^n} \) and has an extension onto the complex space \( {{\mathbb C}^n} \) to an entire function of exponential type K. We study the approximation of functions in \( B_K^p \) by finite τ -periodic exponential sums of the form
$ \sum\limits_m {{c_m}{e^{2\pi {\text{i}}\left( {x,m} \right)/\tau }}} $
in the \( {L^p}\left( {\tau {{\left[ { - 1/2,1/2} \right]}^n}} \right) \)-norm as τ → ∞ when K is a polytope in \( {{\mathbb R}^n} \).
  相似文献   

7.
If \(A\in B(\mathcal{X})\) is an upper triangular Banach space operator with diagonal \((A_1,A_2)\), \(A_1\) invertible and \(A_2\) quasinilpotent, then \(A_1^{-1}\oplus A_2\) satisfies either of the single-valued extension property, Dunford’s condition (C), Bishop’s property \((\beta )\), decomposition property \((\delta )\) or is decomposable if and only if \(A_1\) has the property. The operator \(A^{-1}_1\oplus 0\) is subscalar (resp., left polaroid, right polaroid) if and only if \(A_1\) is subscalar (resp., left polaroid, right polaroid). For Drazin invertible operators A, with Drazin inverse B, this implies that B satisfies any one of these properties if and only if A satisfies the property.  相似文献   

8.
We study nonlinear elliptic equations in divergence form
$$\text {div }{\mathcal A}(x,Du)=\text {div } G.$$
When \({\mathcal A}\) has linear growth in D u, and assuming that \(x\mapsto {\mathcal A}(x,\xi )\) enjoys \(B^{\alpha }_{\frac {n}\alpha , q}\) smoothness, local well-posedness is found in \(B^{\alpha }_{p,q}\) for certain values of \(p\in [2,\frac {n}{\alpha })\) and \(q\in [1,\infty ]\). In the particular case \({\mathcal A}(x,\xi )=A(x)\xi \), G = 0 and \(A\in B^{\alpha }_{\frac {n}\alpha ,q}\), \(1\leq q\leq \infty \), we obtain \(Du\in B^{\alpha }_{p,q}\) for each \(p<\frac {n}\alpha \). Our main tool in the proof is a more general result, that holds also if \({\mathcal A}\) has growth s?1 in D u, 2 ≤ sn, and asserts local well-posedness in L q for each q > s, provided that \(x\mapsto {\mathcal A}(x,\xi )\) satisfies a locally uniform VMO condition.
  相似文献   

9.
An important trigonometric inequality essentially due to Wiener but later on made precise by Ingham concerning the lacunary trigonometric sums \(f(x)=\sum A_ke^{in_kx}\), where \(A_k\)’s are complex numbers, \(n_{-k}=-n_k\) and \(\{n_k\}\) satisfies the small gap condition \((n_{k+1}-n_k)\ge q\ge 1\) for \(k=0,1,2,\ldots \), says that if I is any subinterval of \([-\pi ,\pi ]\) of length \(|I|=2\pi (1+\delta )/q>2\pi /q\) then \(\sum |A_k|^2\le A_{\delta }|I|^{-1}\int _I|f|^2\), \(|A_k|\le A_{\delta }|I|^{-1}\int _I|f|\), wherein \(A_{\delta }\) depends only on \(\delta \). Such an inequality is proved here in the setting of the Vilenkin groups G. The inequality is then applied to generalize the Bernstěin, Szász and Ste?hkin type results concerning the absolute convergence of Fourier series on G.  相似文献   

10.
Let \(f: \mathbb {C}^n \rightarrow \mathbb {C}^k\) be a holomorphic function and set \(Z = f^{-1}(0)\). Assume that Z is non-empty. We prove that for any \(r > 0\),
$$\begin{aligned} \gamma _n(Z + r) \ge \gamma _n(E + r), \end{aligned}$$
where \(Z + r\) is the Euclidean r-neighborhood of Z; \(\gamma _n\) is the standard Gaussian measure in \(\mathbb {C}^n\), and \(E \subseteq \mathbb {C}^n\) is an \((n-k)\)-dimensional, affine, complex subspace whose distance from the origin is the same as the distance of Z from the origin.
  相似文献   

11.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

12.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

13.
The Kneser graph K(nk) is the graph whose vertices are the k-element subsets of an n elements set, with two vertices adjacent if they are disjoint. The square \(G^2\) of a graph G is the graph defined on V(G) such that two vertices u and v are adjacent in \(G^2\) if the distance between u and v in G is at most 2. Determining the chromatic number of the square of the Kneser graph K(nk) is an interesting graph coloring problem, and is also related with intersecting family problem. The square of K(2kk) is a perfect matching and the square of K(nk) is the complete graph when \(n \ge 3k-1\). Hence coloring of the square of \(K(2k +1, k)\) has been studied as the first nontrivial case. In this paper, we focus on the question of determining \(\chi (K^2(2k+r,k))\) for \(r \ge 2\). Recently, Kim and Park (Discrete Math 315:69–74, 2014) showed that \(\chi (K^2(2k+1,k)) \le 2k+2\) if \( 2k +1 = 2^t -1\) for some positive integer t. In this paper, we generalize the result by showing that for any integer r with \(1 \le r \le k -2\),
  1. (a)
    \(\chi (K^2 (2k+r, k)) \le (2k+r)^r\),   if   \(2k + r = 2^t\) for some integer t, and
     
  2. (b)
    \(\chi (K^2 (2k+r, k)) \le (2k+r+1)^r\),   if  \(2k + r = 2^t-1\) for some integer t.
     
On the other hand, it was shown in Kim and Park (Discrete Math 315:69–74, 2014) that \(\chi (K^2 (2k+r, k)) \le (r+2)(3k + \frac{3r+3}{2})^r\) for \(2 \le r \le k-2\). We improve these bounds by showing that for any integer r with \(2 \le r \le k -2\), we have \(\chi (K^2 (2k+r, k)) \le 2 \left( \frac{9}{4}k + \frac{9(r+3)}{8} \right) ^r\). Our approach is also related with injective coloring and coloring of Johnson graph.
  相似文献   

14.
For a graph H, let \(\alpha (H)\) and \(\alpha ^{\prime }(H)\) denote the independence number and the matching number, respectively. Let \(k\ge 2\) and \(r>0\) be given integers. We prove that if H is a k-connected claw-free graph with \(\alpha (H)\le r\), then either H is Hamiltonian or the Ryjá c? ek’s closure \(cl(H)=L(G)\) where G can be contracted to a k-edge-connected \(K_3\)-free graph \(G_0^{\prime }\) with \(\alpha ^{\prime }(G_0^{\prime })\le r\) and \(|V(G_0^{\prime })|\le \max \{3r-5, 2r+1\}\) if \(k\ge 3\) or \(|V(G_0^{\prime })|\le \max \{4r-5, 2r+1\}\) if \(k=2\) and \(G_0^{\prime }\) does not have a dominating closed trail containing all the vertices that are obtained by contracting nontrivial subgraphs. As corollaries, we prove the following:
  1. (a)
    A 2-connected claw-free graph H with \(\alpha (H)\le 3\) is either Hamiltonian or \(cl(H)=L(G)\) where G is obtained from \(K_{2,3}\) by adding at least one pendant edge on each degree 2 vertex;
     
  2. (b)
    A 3-connected claw-free graph H with \(\alpha (H)\le 7\) is either Hamiltonian or \(cl(H)=L(G)\) where G is a graph with \(\alpha ^{\prime }(G)=7\) that is obtained from the Petersen graph P by adding some pendant edges or subdividing some edges of P.
     
Case (a) was first proved by Xu et al. [19]. Case (b) is an improvement of a result proved by Flandrin and Li [12]. For a given integer \(r>0\), the number of graphs of order at most \(\max \{4r-5, 2r+1\}\) is fixed. The main result implies that improvements to case (a) or (b) by increasing the value of r and by enlarging the collection of exceptional graphs can be obtained with the help of a computer. Similar results involved degree or neighborhood conditions are also discussed.
  相似文献   

15.
On Shalika germs     
Let G be (the group of F-points of) a reductive group over a local field F satisfying the assumptions of Debacker (Ann Sci Ecole Norm Sup 35(4):391–422, 2002), sections 2.2, 3.2, 4.3. Let \(G_{{\text {reg}}}\subset G\) be the subset of regular elements. Let \(T\subset G\) be a maximal torus. We write \(T_{{\text {reg}}}=T\cap G_{{\text {reg}}}\). Let dg, dt be Haar measures on G and T. They define an invariant measure Open image in new window on Open image in new window . Let \(\mathcal {H}\) be the space of complex valued locally constant functions on G with compact support. For any \(f\in \mathcal {H}\), \(t\in T_{{\text {reg}}}\), we put \(I_t(f)=\int _{G/T}f(\dot{g}t\dot{g}^{-1})dg/dt\). Let \(\mathcal U\) be the set of conjugacy classes of unipotent elements in G. For any \(\Omega \in \mathcal U\) we fix an invariant measure \(\omega \) on \(\Omega \). It is well known—see, e.g., Rao (Ann Math 96:505-510, 1972)—that for any \(f\in \mathcal {H}\) the integral
$$\begin{aligned} I_\Omega (f)=\int _\Omega f\omega \end{aligned}$$
is absolutely convergent. Shalika (Ann Math 95:226–242, 1972) showed that there exist functions \(j_\Omega (t)\), \(\Omega \in \mathcal U\), on \(T\cap G_{{\text {reg}}}\), such that
$$\begin{aligned} I_t(f)=\sum _{\Omega \in \mathcal U}j_\Omega (t)I_\Omega (f) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad ({\star }) \end{aligned}$$
for any \(f\in \mathcal {H}\), \(t\in T\) near to e, where the notion of near depends on f. For any \(r\ge 0\) we define an open \({\text {Ad}}(G)\)-invariant subset \(G_r\) of G, and a subspace \(\mathcal {H}_r\) of \(\mathcal {H}\), as in Debacker (Ann Sci Ecole Norm Sup 35(4):391–422, 2002). Here I show that for any \(f\in \mathcal {H}_r\) the equality \((\star )\) holds for all \(t\in T_{{\text {reg}}}\cap G_r\).
  相似文献   

16.
A fixed point compactification of a locally compact noncompact group G is a faithful semigroup compactification S such that \(ap=pa=p\) for all \(p\in S\setminus G\) and \(a\in G\). Since the right translations are continuous, the remainder of a fixed point compactification is a right zero semigroup. Among all fixed point compactifications of G there is a largest one, denoted \(\theta G\). We show that if G is \(\sigma \)-compact, then \(\theta G\setminus G\) contains a copy of \(\beta \omega \setminus \omega \). In contrast, if G is not \(\sigma \)-compact, then \(\theta G\) is the one-point compactification.  相似文献   

17.
We show that if α > 1, then the logarithmically weighted Bergman space \(A_{{{\log }^\alpha }}^2\) is mapped by the Libera operator L into the space \(A_{{{\log }^{\alpha - 1}}}^2\), while if α > 2 and 0 < εα?2, then the Hilbert matrix operator H maps \(A_{{{\log }^\alpha }}^2\) into \(A_{{{\log }^{\alpha - 2 - \varepsilon }}}^2\).We show that the Libera operator L maps the logarithmically weighted Bloch space \({B_{{{\log }^\alpha }}}\), α ∈ R, into itself, while H maps \({B_{{{\log }^\alpha }}}\) into \({B_{{{\log }^{\alpha + 1}}}}\).In Pavlovi?’s paper (2016) it is shown that L maps the logarithmically weighted Hardy-Bloch space \(B_{{{\log }^\alpha }}^1\), α > 0, into \(B_{{{\log }^{\alpha - 1}}}^1\). We show that this result is sharp. We also show that H maps \(B_{{{\log }^\alpha }}^1\), α > 0, into \(B_{{{\log }^{\alpha - 1}}}^1\) and that this result is sharp also.  相似文献   

18.
For \(q,n,d \in \mathbb {N}\), let \(A_q(n,d)\) be the maximum size of a code \(C \subseteq [q]^n\) with minimum distance at least d. We give a divisibility argument resulting in the new upper bounds \(A_5(8,6) \le 65\), \(A_4(11,8)\le 60\) and \(A_3(16,11) \le 29\). These in turn imply the new upper bounds \(A_5(9,6) \le 325\)\(A_5(10,6) \le 1625\)\(A_5(11,6) \le 8125\) and \(A_4(12,8) \le 240\). Furthermore, we prove that for \(\mu ,q \in \mathbb {N}\), there is a 1–1-correspondence between symmetric \((\mu ,q)\)-nets (which are certain designs) and codes \(C \subseteq [q]^{\mu q}\) of size \(\mu q^2\) with minimum distance at least \(\mu q - \mu \). We derive the new upper bounds \(A_4(9,6) \le 120\) and \(A_4(10,6) \le 480\) from these ‘symmetric net’ codes.  相似文献   

19.
Let\(B_{2}^{n}\) denote the Euclidean ball in\({\mathbb R}^n\), and, given closed star-shaped body\(K \subset {\mathbb R}^{n}, M_{K}\) denote the average of the gauge of K on the Euclidean sphere. Let\(p \in (0,1)\) and let\(K \subset {\mathbb R}^{n}\) be a p-convex body. In [17] we proved that for every\(\lambda \in (0,1)\) there exists an orthogonal projection P of rank\((1 - \lambda)n\) such that
$\frac{f(\lambda)}{M_K} PB^{n}_{2} \subset PK,$
where\(f(\lambda)=c_p\lambda^{1+1/p}\) for some positive constant c p depending on p only. In this note we prove that\(f(\lambda)\) can be taken equal to\(C_p\lambda^{1/p-1/2}\). In terms of Kolmogorov numbers it means that for every\(k \leq n\)
$d_k (\hbox{Id}:\ell^{n}_{2} \to ({\mathbb R}^{n},\|\cdot\|_{K})) \leq C_p \frac{n^{1/p-1}}{k^{1/p-1/2}} \ell(\hbox{ID}: \ell^{n}_{2} \to ({\mathbb R}^{n}, \|\cdot\|_{K})),$
where\(\ell(\hbox{Id})={\bf E}\|\sum\limits^{n}_{i=1}g_i e_i\|_K\) for the independent standard Gaussian random variables\(\{g_i\}\) and the canonical basis\(\{e_i\}\) of\({\mathbb R}^n\). All results do not require the symmetry of K.
  相似文献   

20.
Let (Mg) be a smooth compact Riemannian manifold of dimension \(n\ge 6\), \(\xi _0\in M\), and we are concerned with the following Hardy–Sobolev elliptic equations:
$$\begin{aligned} -\Delta _gu+h(x)u=\frac{u^{2^{*}(s)-1-\epsilon }}{d_{g}(x,\xi _0)^s},\ \ \ \ u>0\ \ \mathrm{in} \ \ M, \end{aligned}$$
(0.1)
where \(\Delta _g\,=\,\mathrm{div}_g(\nabla )\) is the Laplace–Beltrami operator on M, h(x) is a \(C^1\) function on M, \(\epsilon \) is a sufficiently small real parameter, \(2^{*}(s):=\frac{2(n-s)}{n-2}\) is the critical Hardy–Sobolev exponent with \(s\in (0,2)\), and \(d_{g}\) is the Riemannian distance on M. Performing the Lyapunov–Schmidt reduction procedure, we obtain the existence of blow-up families of positive solutions of problem (0.1).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号