首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanotubes can be characterized by a very high point symmetry, comparable or even larger than the one of the most symmetric crystalline systems (cubic, 48 point symmetry operators). For example, N = 2n rototranslation symmetry operators connect the atoms of the (n,0) nanotubes. This symmetry is fully exploited in the CRYSTAL code. As a result, ab initio quantum mechanical large basis set calculations of carbon nanotubes containing more than 150 atoms in the unit cell become very cheap, because the irreducible part of the unit cell reduces to two atoms only. The nanotube symmetry is exploited at three levels in the present implementation. First, for the automatic generation of the nanotube structure (and then of the input file for the SCF calculation) starting from a two‐dimensional structure (in the specific case, graphene). Second, the nanotube symmetry is used for the calculation of the mono‐ and bi‐electronic integrals that enter into the Fock (Kohn‐Sham) matrix definition. Only the irreducible wedge of the Fock matrix is computed, with a saving factor close to N. Finally, the symmetry is exploited for the diagonalization, where each irreducible representation is separately treated. When M atomic orbitals per carbon atom are used, the diagonalization computing time is close to Nt, where t is the time required for the diagonalization of each 2M × 2M matrix. The efficiency and accuracy of the computational scheme is documented. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
The spin‐free wave function due to Fock (Zh Eksp Teor Fiz, 1940, 10, 961) is re‐examined with a stress on the reduced density matrix (RDM) theory. The key notion of the Fock approach is the cyclic symmetry of wave functions. It is a specific algebraic identity involving transpositions of numbers taken from two different columns of the corresponding Young tableau. We show first how to construct symmetry adapted states by accounting for high‐order cyclic symmetry conditions. For Young's projectors, it gives a new expression including nothing but antisymmetrizers. Next, transforming the Fock spin‐free state by a duality operator (the star operator in exterior algebra), we arrive at the representation closely related to spin‐flip models. In such spin‐flip models, a coupling operator is the basic object for which we show that the cyclic symmetry is transformed into a tracelessness of the coupling operator. The main results are related to the spin‐free theory of spin properties. In particular, the theorem previously stated (Luzanov and Whyman, Int J Quantum Chem, 1981, 20, 1179) is refined by an explicit general representation of spin density operators through spin‐free (charge) RDMs. Some applications implicating high‐order RDMs (collectivity numbers, the unpaired electron problem, cumulant spin RDMs, spin correlators, etc.) are also considered. For spin‐free RDM components, a new projection procedure without constructing any symmetry adapted state is proposed. An unsolved problem of constructing orthogonal representation matrices within the Fock theory is raised. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

3.
A series of six radical cations of the type (D L D)+ was investigated at the ab initio unrestricted Hartree–Fock level. One localized and one delocalized conformation were systematically searched by full geometry optimization. At both nuclear arrangements, mostly found as being minima in the symmetry‐restrained Hartree–Fock framework, excitation energies were calculated through the expansion of the wave function on single electronic excitations of the Hartree–Fock fundamental determinant and at the unrestricted Hartree–Fock or at the multiconfigurational self consistent field levels. Few calculations were also performed by taking into account some part of the electronic correlation. Except for N,N,N′,N′‐tetramethyl p‐phenylenediamine, all the studied compounds are localized stable cations, at the symmetry‐restrained Hartree–Fock level. However, the reoptimization of their wave function changes this observation since only three of them seem to conserve a localized stable conformation. Most of the studied systems are characterized by one or two excited electronic states very close to the fundamental one and should thus present an unresolved broadened first absorption band in the near‐infrared region. These features are in agreement with the available experimental data. Strong Hartree–Fock instabilities are found for the delocalized structure and put in relation with the existence of the large nonadiabatic coupling in this conformational region. The solvent influence is discussed in the Onsager dipolar reaction field framework. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 552–573, 2000  相似文献   

4.
Single chain and packing energy calculations have been made on polyglycine (threefold and fourfold helical structures) with interchain NH…?O hydrogen bonds. In conformation A of polyglycine, in which the NH groups point away from the helix axis and the CO groups are nearer to the helix axis, the conformational energy is nearly the same for threefold and fourfold structures. However, the minimum energy conformation corresponds to a threefold structure of polyglycine with peptide configurations in conformation B in which the CO groups point away from the helix axis and NH groups are nearer to the helix axis. This structure is consistent with the polyglycine II x-ray diffraction data.  相似文献   

5.
A parallel Fock matrix construction program for FMO‐MO method has been developed with the distributed shared memory model. To construct a large‐sized Fock matrix during FMO‐MO calculations, a distributed parallel algorithm was designed to make full use of local memory to reduce communication, and was implemented on the Global Array toolkit. A benchmark calculation for a small system indicates that the parallelization efficiency of the matrix construction portion is as high as 93% at 1,024 processors. A large FMO‐MO application on the epidermal growth factor receptor (EGFR) protein (17,246 atoms and 96,234 basis functions) was also carried out at the HF/6‐31G level of theory, with the frontier orbitals being extracted by a Sakurai‐Sugiura eigensolver. It takes 11.3 h for the FMO calculation, 49.1 h for the Fock matrix construction, and 10 min to extract 94 eigen‐components on a PC cluster system using 256 processors. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
The molecular structure and intramolecular hydrogen bond energies of 44 conformers of 2‐Amino methylene malonaldehyde were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set and AIM and NBO analysis. The calculated geometrical parameters and conformational analysis in gas phase show that the closed ring via intramolecular hydrogen bonded conformers of this compound are more stable than the other ones. Hydrogen bond energies for H‐bonded conformers were obtained from the related rotamers method (RRM) and Schuster method, and also the nature of H‐bonding of them has been investigated by means of the Bader theory of atoms in molecules, which is based on topological properties of the electron density. Delocalization effects can be identified from the presence of off diagonal elements of the Fock matrix in the NBO basis. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
The electronic structure of a 2D polyglycine network with a pleated sheet structure has been computed at the Hartree–Fock level and by including electron correlation effects within the second order of many-body perturbation theory (electron polaron model). The influence of the size of the atomic basis set and of the extension of the virtual space has been investigated both for single- and many-particle properties. Comparison with the energy of the corresponding single chains showed that interchain interactions (mainly hydrogen bonding) provide an extra stabilization for the 2D network by 7.4 and 10 kcal/mole per glycine residue at the Hartree–Fock and correlated levels, respectively. The energy dispersions are rather anisotropic for all bands whose widths are about 0.5–1 eV along the polypeptide backbones and 0.1–0.2 eV in the perpendicular direction (hydrogen bonds). The HF value of the fundamental energy gap is reduced by 4 eV to 9.2 eV for electron polarons. The wave functions and interaction integrals obtained can be used to calculate further optical and lattice vibrational properties.  相似文献   

8.
Ways to reduce the computational cost of periodic electronic structure calculations by using basis functions corresponding to linear combinations of planewaves have been examined recently. These contracted planewave (CPW) basis functions correspond to Fourier series representations of atom‐centered basis functions, and thus provide access to some beneficial properties of planewave (PW) and localized basis functions. This study reports the development and assessment of a direct inversion of the iterative subspace (DIIS) method that employs unique properties of CPW basis functions to efficiently converge electronic wavefunctions. This method relies on access to a PW‐based representation of the electronic structure to provide a means of efficiently evaluating matrix–vector products involving the application of the Fock matrix to the occupied molecular orbitals. These matrix–vector products are transformed into a form permitting the use of direct diagonalization techniques and DIIS methods typically employed with atom‐centered basis sets. The abilities of this method are assessed through periodic Hartree–Fock calculations of a range of molecules and solid‐state systems. The results show that the method reported in this study is approximately five times faster than CPW‐based calculations in which the entire Fock matrix is calculated. This method is also found to be weakly dependent upon the size of the basis set, thus permitting the use of larger CPW basis sets to increase variational flexibility with a minor impact on computational performance. © 2018 Wiley Periodicals, Inc.  相似文献   

9.
This article presents an open‐source object‐oriented C++ library of classes and routines to perform tensor algebra. The primary purpose of the library is to enable post‐Hartree–Fock electronic structure methods; however, the code is general enough to be applicable in other areas of physical and computational sciences. The library supports tensors of arbitrary order (dimensionality), size, and symmetry. Implemented data structures and algorithms operate on large tensors by splitting them into smaller blocks, storing them both in core memory and in files on disk, and applying divide‐and‐conquer‐type parallel algorithms to perform tensor algebra. The library offers a set of general tensor symmetry algorithms and a full implementation of tensor symmetries typically found in electronic structure theory: permutational, spin, and molecular point group symmetry. The Q‐Chem electronic structure software uses this library to drive coupled‐cluster, equation‐of‐motion, and algebraic‐diagrammatic construction methods. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
To eliminate the cutoff effects in the supermolecule model (SM), the Fock matrix transformed supermolecule model (FTSM) is developed. In this model a cyclization of the cluster is performed by means of transformations of elements of the Fock matrix, thereby restoring the translational symmetry. Besides this fundamental enhancement, significant CPU time savings are realized because, in this new procedure, not all Fock matrix elements need to be calculated. The method is applied in a study of the structure of D-erythronic acid-3,4-carbonate in the crystal phase, where the new model is compared to the supermolecule model as well as the XRD experiment. The results are found to be in good agreement with experimental data.  相似文献   

11.
Using symmetry to determine Hamiltonian matrix elements for quantum systems with finite group symmetry is a special case of obtaining group-generated irreducible tensorial matrices. A group-generated irreducible tensorial matrix transforms irreducibly under the group and is a linear combination of group transformations on a reference matrix. The reference matrix elements may be appropriate integrals or parameters. The methods of normalized irreducible tensorial matrices (NITM) are employed to express elements of the generated matrix in terms of those of the reference matrix without performing the actual transformations. Only NTTM components of the reference matrix with the same transformation properties as the group-generated matrix will contribute to its elements. The elements of invariant symmetry-generated matrices are proportional to simple averages of certain elements of the reference matrix. This relation is substantially more efficient than previous techniques for evaluating matrix elements of octahedral and tetragonal d-type ligand-field Hamiltonians.  相似文献   

12.
We have investigated the folding pathway of the 36‐residue villin headpiece subdomain (HP‐36) by action‐derived molecular dynamics simulations. The folding is initiated by hydrophobic collapse, after which the concurrent formation of full tertiary structure and α‐helical secondary structure is observed. The collapse is observed to be associated with a couple of specific native contacts contrary to the conventional nonspecific hydrophobic collapse model. Stable secondary structure formation after the collapse suggests that the folding of HP‐36 follows neither the framework model nor the diffusion‐collision model. The C‐terminal helix forms first, followed by the N‐terminal helix positioned in its native orientation. The short middle helix is shown to form last. Signs for multiple folding pathways are also observed. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

13.
Two different helical conformations (alpha and 3-10 helices) of polyserine are studied using density functional theory. The infinite system characterized by exact translational-rotational symmetry is examined in vacuum using the BLYP exchange-correlation functional. Geometry analysis in terms of hydrogen bond strength and total energies of the different conformers are presented. The structural changes due to the presence of the serine side chain are identified comparing the polyserine and polyglycine chains. The rotational energy curves of the side chain are presented for both investigated helices. Band structures of polyserine and polyglycine conformers are also compared.  相似文献   

14.
Hartree–Fock instabilities are investigated for about 80 compounds, from acetylene to mivazerol (27 atoms) and a cluster of 18 water molecules, within a double ζ basis set. For most conjugated systems, the restricted Hartree–Fock wave function of the singlet fundamental state presents an external or so‐called triplet instability. This behavior is studied in relation with the electronic correlation, the vicinity of the triplet and singlet excited states, the electronic delocalization linked with resonance, the nature of eventual heteroatoms, and the size of the systems. The case of antiaromatic systems is different, because they may present a very large internal Hartree–Fock instability. Furthermore, the violation of Hund's rule, observed for these compounds, is put in relation with the fact that the high symmetry structure in its singlet state has no feature of a diradical‐like species. It appears that the triplet Hartree–Fock instability is directly related with the spin properties of nonnull orbital angular momentum electronic systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 483–504, 2000  相似文献   

15.
We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schr?dinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix gamma1=gamma, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for gamma. For a closed-shell state gamma is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants lambdak with k> or =2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of lambda2, which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of gamma. There are essentially three possibilities to construct the diagonal elements of gamma: (i) to consider the perturbation expansion of the characteristic polynomial of gamma, especially the idempotency for closed-shell states, (ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly powerful, especially, when one wishes to study realistic Hamiltonians with a two-body interaction.  相似文献   

16.
We formulate a Hartree–Fock‐LAPW method for electronic band structure calculations. The method is based on the Hartree–Fock–Roothaan approach for solids with extended electron states and closed core shells where the basis functions of itinerant electrons are linear augmented plane waves. All interactions within the restricted Hartree–Fock approach are analyzed and in principle can be taken into account. In particular, we obtained the matrix elements for the exchange interactions of extended states and the crystal electric field effects. To calculate the matrix elements of exchange for extended states, we first introduce an auxiliary potential and then integrate it with an effective charge density corresponding to the electron exchange transition under consideration. The problem of finding the auxiliary potential is solved by using the strategy of the full potential LAPW approach, which is based on the general solution of periodic Poisson's equation. Here, we use an original technique for the general solution of periodic Poisson's equation and multipole expansions of electron densities. We apply the technique to obtain periodic potentials of the face‐centered cubic lattice and discuss its accuracy and convergence in comparison with other methods. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

17.
The molecular structure, vibrational spectrum, standard thermodynamic functions, and enthalpy of formation of free base phthalocyanine (Pc) have been studied using the density functional theory B3LYP procedure, as well as the ab initio Hartree–Fock method. Various basis sets 3‐21G, 6‐31G*, and LANL2DZ have been employed. The results obtained at various levels are discussed and compared with each other and with the available experimental data. It is shown that calculations performed at the Hartree–Fock level cannot produce a reliable geometry and related properties such as the dipole moment of Pc and similar porphyrin‐based systems. Electron correlation must be included in the calculations. The basis set has comparatively less effect on the calculated results. The results derived at the B3LYP level using the smaller 3‐21G and LANL2DZ basis sets are very close to those produced using the medium 6‐31G* basis set. The geometry of Pc obtained at the B3LYP level has D2h symmetry and the diameter of the central macrocycle is about 4 Å. The enthalpy of formation of Pc in the gas phase has been predicted to be 1518.50 kJ/mol at the B3LYP/6‐311G(2d,2p)//B3LYP/6‐31G* level via an isodesmic reaction. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

18.
This study considered the possibility of proton transfer reactions through the peptide bond under different environments using the dipeptide and the 12-mer polyglycine α-helix models, in which diglycine is substituted by the 12-mer polyglycine helix. Ab initio molecular orbital calculations were carried out at the B3LYP/6-31+G(d) level of theory. To evaluate the free energies in solution, calculations of the solvation energies were performed using PCM. The correction functions on the calculated solvation energies were provided to reproduce experimental pKa values. The proton transfer reactions through the peptide bond are concluded to be possible in the protein for a wide range of proton acceptors. His complex has two free energy minima along a putative proton transfer pathway in spite of one minimum in the other complexes. The α-helix is estimated to suppress the proton transfer reactions through the peptide bond at the termini of the helix, although it is possible to proceed when the proton affinity of the acceptor is low. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

19.
An equivalent basis of icosahedral molecules is introduced in which the basis functions can be transformed under the operations in the icosahedral group (Ih). In this equivalent basis, the irreducible representation basis (IRB) of Ih, including the double‐valued IRB of I, is deduced analytically based on the method introduced in the literature [J. Comput. Chem. 17 , 851 (1996)]. Therefore the concepts of symmetry‐matrix and symmetry‐supermatrix can be used in the single‐ and multiconfiguration self‐consistent field methods (including relativistic effects) to reduce the storage of two‐electron integrals and calculations of Fock matrix during iterations by a factor of ca. 10,000. In addition, the equivalent basis of Ih can also be used to reduce the calculations of atoms and representations of rank ≥ 2 tensors. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 615–624, 2000  相似文献   

20.
本文利用有色对称的理论讨论了螺旋型高分子链晶体结构所属空间群的演变规律性。得出:(1)有序链结构的空间群是无序链结构空间群的有色空间群;(2)对称性较低的螺旋链所属空间群是高对称螺旋链所属空间群的有色空间群;(3)从而得出空间群演变的方向、途径和结果,总结出其演变的规律性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号