首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is proposed to rapidly predict the hydrogen bond cooperativity in N‐methylacetamide chains. The parameters needed are obtained from the fittings to the hydrogen bonding energies in the formamide chains containing 2 to 8 monomeric units. The scheme is then used to calculate the individual hydrogen bonding energies in N‐methylacetamide chains containing 2 to 7 monomeric units. The cooperativity predicted is in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction. Our scheme is further employed to predict the individual hydrogen bonding energies in larger N‐methylacetamide chains containing up to 200 monomeric N‐methylacetamide units, to which the MP2 method cannot be applied. Based on our scheme, a cooperative effect of over 170 % of the dimer hydrogen bonding energy in long N‐methylacetamide chains is predicted. The method is also applied to heterogeneous chains containing formamide, acetamide, N‐methylformamide, and N‐methylacetamide. The individual hydrogen bonding energies in these heterogeneous chains are also in good agreement with those obtained from MP2 calculations with the BSSE correction, further demonstrating that our method is reasonable.  相似文献   

2.
An analytic potential energy function is proposed and applied to evaluate the amide–amide and amide–water hydrogen‐bonding interaction energies in peptides. The parameters in the analytic function are derived from fitting to the potential energy curves of 10 hydrogen‐bonded training dimers. The analytic potential energy function is then employed to calculate the N? H…O?C, C? H…O?C, N? H…OH2, and C?O…HOH hydrogen‐bonding interaction energies in amide–amide and amide–water dimers containing N‐methylacetamide, acetamide, glycine dipeptide, alanine dipeptide, N‐methylformamide, N‐methylpropanamide, N‐ethylacetamide and/or water molecules. The potential energy curves of these systems are therefore obtained, including the equilibrium hydrogen bond distances R(O…H) and the hydrogen‐bonding energies. The function is also applied to calculate the binding energies in models of β‐sheets. The calculation results show that the potential energy curves obtained from the analytic function are in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction, which demonstrate that the analytic function proposed in this work can be used to predict the hydrogen‐bonding interaction energies in peptides quickly and accurately. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

3.
The individual hydrogen bonding energies in N-methylacetamide chains were evaluated at the MP2/6-31+G** level including BSSE correction and at the B3LYP/6-311++G(3df,2pd) level including BSSE and van der Waals correction. The calculation results indicate that compared with MP2 results, B3LYP calculations without van der Waals correction underestimate the individual hydrogen bonding energies about 5.4 kJ mol?1 for both the terminal and central hydrogen bonds, whereas B3LYP calculations with van der Waals correction produce almost the same individual hydrogen bonding energies as MP2 does for those terminal hydrogen bonds, but still underestimate the individual hydrogen bonding energies about 2.5 kJ mol?1 for the hydrogen bonds near the center. Our calculation results show that the individual hydrogen bonding energy becomes more negative (more attractive) as the chain becomes longer and that the hydrogen bonds close to the interior of the chain are stronger than those near the ends. The weakest individual hydrogen bonding energy is about ?29.0 kJ mol?1 found in the dimer, whereas with the growth of the N-methylacetamide chain the individual hydrogen bonding energy was estimated to be as large as ?62.5 kJ mol?1 found in the N-methylacetamide decamer, showing that there is a significant hydrogen bond cooperative effect in N-methylacetamide chains. The natural bond orbital analysis indicates that a stronger hydrogen bond corresponds to a larger positive charge for the H atom and a larger negative charge for the O atom in the N-H?O=C bond, corresponds to a stronger second-order stabilization energy between the oxygen lone pair and the N-H antibonding orbital, and corresponds to more charge transfer between the hydrogen bonded donor and acceptor molecules.  相似文献   

4.
Insights into the formation of hydrogen bonded clusters are of outstanding importance and quantum chemical calculations play a pivotal role in achieving this understanding. Structure and energetic comparison of linear, circular and standard forms of (acetamide)(n) clusters (n = 1-15) at the B3LYP/D95** level of theory including empirical dispersion correction reveals significant cooperativity of hydrogen bonding and size dependent structural preference. A substantial amount of impact of BSSE is observed in these calculations as the cluster size increases irrespective of the kind of arrangement. The interaction energy per monomer increases from dimer to 15mer by 90% in the case of the circular arrangement, by 76% in the case of the linear arrangement and by 34% in the case of the standard arrangement respectively. The cooperativity in hydrogen bonding is also manifested by a regular decrease in average OH and C-N bond distances, while average C=O and N-H bond lengths increase with increasing cluster size. Atoms-In-Molecules (AIM) analysis is used to characterize the nature of hydrogen bonding between the acetamide molecules in the cluster on the basis of electron density (ρ) values obtained at the bond critical point. An analysis of N-H bond stretching frequencies as a function of the cluster size shows a marked red shift as the cluster size increases from 1 to 15.  相似文献   

5.
The binding energies and the equilibrium hydrogen bond distances as well as the potential energy curves of 48 hydrogen‐bonded amide–thymine and amide–uracil dimers are evaluated from the analytic potential energy function established in our lab recently. The calculation results show that the potential energy curves obtained from the analytic potential energy function are in good agreement with those obtained from MP2/6‐311+G** calculations by including the BSSE correction. For all the 48 dimers, the analytic potential energy function yields the binding energies of the MP2/6‐311+G** with BSSE correction within the error limits of 0.50 kcal/mol for 46 dimers, only two differences are larger than 0.50 kcal/mol and the largest one is only 0.60 kcal/mol. The analytic potential energy function produces the equilibrium hydrogen bond distances of the MP2/6‐311+G** with BSSE correction within the error limits of 0.050 Å for all the 48 dimers. The analytic potential energy function is further applied to four more complicated hydrogen‐bonded amide–base systems involving amino acid side chain and β‐sheet. The values of the binding energies and equilibrium hydrogen bond distances obtained from the analytic potential energy function are also in good agreement with those obtained from MP2 calculations with the BSSE correction. These results demonstrate that the analytic potential energy function can be used to evaluate the binding energies in hydrogen‐bonded amide–base dimers quickly and accurately. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

6.
A reduced model of polypeptide chains and protein stochastic dynamics is employed in Monte Carlo studies of the coil‐globule transition. The model assumes a high‐resolution lattice representation of protein conformational space. The interaction scheme is derived from a statistical analysis of structural regularities seen in known three‐dimensional protein structures. It is shown that model polypeptides containing residues that have strong propensities towards locally expanded conformations collapse to β‐like globular conformations, while polypeptides containing residues with helical propensities form globules of closely packed helices. A more cooperative transition is observed for β‐type systems. It is also demonstrated that hydrogen bonding is an important factor for protein cooperativity, although, for systems with suppressed hydrogen bond interactions, a higher cooperativity of β‐type proteins is also observed.  相似文献   

7.
The basis set superposition error (BSSE) influence in the geometry structure, interaction energies, and intermolecular harmonic and anharmonic vibrational frequencies of cyclic formamide–formamide and formamide–water dimers have been studied using different basis sets (6‐31G, 6‐31G**, 6‐31++G**, D95V, D95V**, and D95V++**). The a posteriori “counterpoise” (CP) correction scheme has been compared with the a priori “chemical Hamiltonian approach” (CHA) both at the Hartree–Fock (HF) and second‐order Møller–Plesset many‐body perturbation (MP2) levels of theory. The effect of BSSE on geometrical parameters, interaction energies, and intermolecular harmonic vibrational frequencies are discussed and compared with the existing experimental data. As expected, the BSSE‐free CP and CHA interaction energies usually show less deep minima than those obtained from the uncorrected methods at both the HF and MP2 levels. Focusing on the correlated level, the amount of BSSE in the intermolecular interaction energies is much larger than that at the HF level, and this effect is also conserved in the values of the force constants and harmonic vibrational frequencies. All these results clearly indicate the importance of the proper BSSE‐free correlation treatment with the well‐defined basis functions. At the same time, the results show a good agreement between the a priori CHA and a posteriori CP correction scheme; this agreement is remarkable in the case of large and well‐balanced basis sets. The anharmonic frequency correction values also show an important BSSE dependence, especially for hydrogen bond stretching and for low frequencies belonging to the intermolecular normal modes. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

8.
9.
The lithium‐ and hydrogen‐bonded complex of HLi? NCH? NCH is studied with ab initio calculations. The optimized structure, vibrational frequencies, and binding energy are calculated at the MP2 level with 6‐311++G(2d,2p) basis set. The interplay between lithium bonding and hydrogen bonding in the complex is investigated with these properties. The effect of lithium bonding on the properties of hydrogen bonding is larger than that of hydrogen bonding on the properties of lithium bonding. In the trimer, the binding energies are increased by about 19 % and 61 % for the lithium and hydrogen bonds, respectively. A big cooperative energy (?5.50 kcal mol?1) is observed in the complex. Both the charge transfer and induction effect due to the electrostatic interaction are responsible for the cooperativity in the trimer. The effect of HCN chain length on the lithium bonding has been considered. The natural bond orbital and atoms in molecules analyses indicate that the electrostatic force plays a main role in the lithium bonding. A many‐body interaction analysis has also been performed for HLi? (NCH)N (N=2–5) systems.  相似文献   

10.
The binding energies and the equilibrium hydrogen bond distances as well as the potential energy curves of 20 hydrogen‐bonded amide–base dimers are evaluated from the analytic potential energy function established in our laboratory recently. The analytic potential energy function is used to calculate the N? H···N, N? H···O?C, C? H···N, and C? H···O?C dipole–dipole attractive interaction energies and C?O···O?C, N? H···H? N, and N? H···H? C dipole–dipole repulsive interaction energies in the 20 dimers composed of DNA bases adenine, guanine, cytosine, or thymine and peptide amide. The calculation results show that the potential energy curves obtained from the analytic potential energy function are in good agreement with those obtained from MP2/6‐311+G** calculations by including the basis set superposition error (BSSE) correction. For all the 20 dimers, the analytic potential energy function yields the binding energies of the MP2/6‐311+G** with BSSE correction within the error limits of 0.50 kcal/mol for 19 dimers, only one difference is larger than 0.50 kcal/mol and the difference is only 0.61 kcal/mol. The analytic potential energy function produces the equilibrium hydrogen bond distances of the MP2/6‐311+G** with BSSE correction within the error limits of 0.030 Å for all the 20 dimers. The analytic potential energy function is further applied to four more complicated DNA base‐peptide amide systems involving amino acid side chain and β‐sheet. The values of the binding energies and equilibrium hydrogen bond distances obtained from the analytic potential energy function are also in good agreement with those obtained from MP2 calculations with the BSSE correction. These results demonstrate that the analytic potential energy function can be used to evaluate the binding energies in hydrogen‐bonded peptide amide–DNA base dimers quickly and accurately. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

11.
Ab initio SCF and Mφller-Plesset correlation correction methods in combination with counterpose procedure for BSSE correction have been applied to the theroetical studying of dimethylnitroamine and its dimers and trimers.Three optimized stable dimers and two trimers have been obtained.The corrected binding energies of the most stable dimer and trimer were predicted to be -24.68kJ/mol and -47.27kJ/mol,respectively at the MP2/6-31G^*//HF/6-31G^* level.The proportion of correlated interation energies to their total interaction energies for all clusters was at least 29.3 percent,and the BSSE of ΔE(MP2) was at least 10.0kJ/mol.Dispersion and/or electrostatic force were dominant in all clusters.There exist cooperative effects in both the chain and the cyclic trimers.The vibrational frequencies associated with N-O stretches or wags exhibit slight red shifts,but the modes associated with the motion of hydrogen atoms of the methyl group show somewhat blue shifts with respect to those of monomer.Thermodynamic properties of dimethylnitroamine and its clusters at different temperatures have been calculated on the basis of vibrational analyses.The changes of the Gibbs free energies for the aggregation from monomer to the most stable dimer and trimer were predicted to be 14.37kJ/mol and 30.40kJ/mol,respectively,at 1 atm and 298.15K.  相似文献   

12.
In the title compound, [Ni(C28H18N2O2)], the NiII centre has a square‐planar coordination geometry in which the Schiff base ligand acts as a cisO,N,N′,O′‐tetradentate ligand. The crystal structure is built up of centrosymmetric dimer units stacked into chains along the [010] direction. Adjacent chains associate via C—H...O hydrogen bonding only, leading to a two‐dimensional sheet‐like structure consisting of layers parallel to (10). The cofacial dimeric complex contains an Ni...Ni contact of 3.291 (4) Å.  相似文献   

13.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

14.
The ab initio and density functional (DFT) methods were performed on binary systems of N,N-dimethylformamide (DMF) with xylenes (o-, or m-, or p-xylene), and seven stable configurations were obtained with no imaginary frequencies. To obtain the interaction energies of these complexes, single-point energy calculations with basis set superposition error (BSSE) correction were carried out at B3LYP/6-31G* and MP2/6-31G* levels. The structures, Chelpg (charges from electrostatic potentials using a grid-based method) charge distribution and bond characteristics of the mentioned complexes were calculated. The results indicated the presence of double C–H···O hydrogen bonds between DMF and xylenes in these complexes and the interaction energies of hydrogen bonding between DMF and xylene systems decreased in the following sequence: DMF–o-xylene: a1 > DMF–m-xylene: b1 > DMF–p-xylene: c1.  相似文献   

15.
16.
Density functional theory (DFT) calculations have been performed to study the structures and stability of X?·(HX)n=2–5 clusters where X = F, Cl, Br at B3LYP/6‐311++G** level of theory. The presence of halide ions in these clusters disintegrates the hydrogen halide clusters. All the hydrogen halides are then hydrogen bonded to the centrally placed halide ions, thereby forming multiple hydrogen bonds. The interaction energies have been corrected for the basis set superposition error (BSSE) using Boy's counterpoise correction method. Evidence for the destruction of hydrogen bonds in hydrogen halide clusters due to the presence of halide ions is further obtained from topological analysis and natural bond orbital analysis. The chemical hardness and chemical potential have been calculated for all the anion clusters. The above analysis reveals that hydrogen bonding in these systems is not an essentially electrostatic interaction. The nature of the stabilization interactions operative in these multiple hydrogen‐bonded clusters has been explained in terms of many‐body contribution to interaction energies. From these studies, an attempt has been made to understand the nature of the molecular properties resulting from different electronegativities of the halogens. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
Summary. Semirubins are analogs for one-half of the bilirubin structure and capable of intramolecular hydrogen bonding. Semirubin amides of ammonia and primary amines are also capable of intramolecular hydrogen bonding. From a combination of spectroscopic methods (1H NMR, NOE, and VPO), the primary amide is found to engage very effectively in intramolecular hydrogen bonding. The secondary and tertiary amides engage in both intramolecular (i) and intermolecular (ii) hydrogen bonding: N-methyl (i, monomer + ii, dimer), N-tert-butyl (ii, dimer), N,N-diethyl (i, monomer + ii, dimer). With an oxo-group at C(10), all of the amides are monomeric and most engage in intramolecular hydrogen bonding.  相似文献   

18.
A model is proposed to rapidly evaluate the individual hydrogen bonding energies in linear water chains. We regarded the two O--H bonds of a water molecule as two dipoles. The magnitude of the O--H bond dipole mo- ment can be varied due to the other water molecules' presence. An analytic potential energy function, which explicitly contains the permanent dipole-dipole interactions, the polarization interactions, the van der Waals interactions and the covalent interactions, was therefore established. The individual hydrogen bonding energies in a series of linear water chains were evaluated via the analytic potential energy function and compared with those obtained from the CP-corrected MP2/aug-cc-pVTZ calculations. The results show that the analytic potential energy function not only can produce the individual hydrogen bonding energies as accurately as the CP-corrected MP2/aug-cc-pVTZ method, but is very efficient as well, demonstrating the model proposed is reasonable and useful. Based on the individual hy- drogen bonding energies obtained, the hydrogen bonding cooperativity in the linear water chains was explored and the natures of the hydrogen bonding in these water chains were discussed.  相似文献   

19.
Semirubins are analogs for one-half of the bilirubin structure and capable of intramolecular hydrogen bonding. Semirubin amides of ammonia and primary amines are also capable of intramolecular hydrogen bonding. From a combination of spectroscopic methods (1H NMR, NOE, and VPO), the primary amide is found to engage very effectively in intramolecular hydrogen bonding. The secondary and tertiary amides engage in both intramolecular (i) and intermolecular (ii) hydrogen bonding: N-methyl (i, monomer + ii, dimer), N-tert-butyl (ii, dimer), N,N-diethyl (i, monomer + ii, dimer). With an oxo-group at C(10), all of the amides are monomeric and most engage in intramolecular hydrogen bonding.  相似文献   

20.
The hydrogen bonding interactions between cysteine (Cys) and formaldehyde (FA) were studied with density functional theory regarding their geometries, energies, vibrational frequencies, and topological features of the electron density. The quantum theory of atoms in molecules and natural bond orbital analyses were employed to elucidate the interaction characteristics in the Cys‐FA complexes. The intramolecular hydrogen bonds (H‐bonds) formed between the hydroxyl and the N atom of cysteine moiety in some Cys‐FA complexes were strengthened because of the cooperativity. Most of intermolecular H‐bonds involve the O atom of cysteine/FA moiety as proton acceptors, while the strongest H‐bond involves the O atom of FA moiety as proton acceptor, which indicates that FA would rather accept proton than providing one. The H‐bonds formed between the CH group of FA and the S atom of cysteine in some complexes are so weak that no hydrogen bonding interactions exist among them. In most of complexes, the orbital interaction of H‐bond is predominant during the formation of complex. The electron density (ρb) and its Laplace (?2ρb) at the bond critical point significantly correlate with the H‐bond parameter δR, while a linearly relationship between the second‐perturbation energy E(2) and ρb has been found as well. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号