首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency and accuracy of the perturbation‐selection used in the symmetry‐adapted cluster‐configuration interaction (SAC‐CI) calculations are investigated for several low‐lying valence excited states of 21 medium‐size molecules, including typical chromophores with heterocyclic macrocycles (free‐base porphine, coumarin, indole, and BODIPY), nucleobases, amino acids (tyrosine and tryptophan), polycyclic aromatic hydrocarbons, and organometallics (ferrocene and Re(bpy) ). Benchmark SAC‐CI calculations with up to 110 million operators are performed. The efficiency of the perturbation‐selection depends on the molecular orbitals (MOs); therefore, the canonical MO and localized MO (LMO) obtained by Pipek‐Mezey's method are examined. Except for the highly symmetric molecules, using LMOs improves the efficiency and accuracy of the perturbation‐selection. With using LMOs and perturbation‐selection, sufficiently reliable results can be obtained in less than 10% of the computational costs required for the full‐dimensional calculations. The perturbation‐selection with LMOs is suggested to be a promising method for excited states in larger molecular systems. Copyright © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
Although recent years have seen much progress in the elucidation of the mechanisms underlying the bioluminescence of fireflies, there is to date no consensus on the precise contributions to the light emission from the different possible forms of the chemiexcited oxyluciferin (OxyLH2) cofactor. Here, this problem is investigated by the calculation of excited‐state equilibrium constants in aqueous solution for keto–enol and acid–base reactions connecting six neutral, monoanionic and dianionic forms of OxyLH2. Particularly, rather than relying on the standard Förster equation and the associated assumption that entropic effects are negligible, these equilibrium constants are for the first time calculated in terms of excited‐state free energies of a Born–Haber cycle. Performing quantum chemical calculations with density functional theory methods and using a hybrid cluster‐continuum approach to describe solvent effects, a suitable protocol for the modeling is first defined from benchmark calculations on phenol. Applying this protocol to the various OxyLH2 species and verifying that available experimental data (absorption shifts and ground‐state equilibrium constants) are accurately reproduced, it is then found that the phenolate‐keto‐OxyLH monoanion is intrinsically the preferred form of OxyLH2 in the excited state, which suggests a potential key role for this species in the bioluminescence of fireflies. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Hylleraas–configuration interaction (Hy–CI) method variational calculations with up to 4648 expansion terms are reported for the ground 1S state of neutral helium. Convergence arguments are presented to obtain estimates for the exact nonrelativistic energy of this state. The nonrelativistic energy is calculated to be ?2.9037 2437 7034 1195 9829 99 a.u. Comparisons with other calculations and an energy extrapolation give an estimated nonrelativistic energy of ?2.9037 2437 7034 1195 9830(2) a.u., which agrees well with the best previous variational energy, ?2.9037 2437 7034 1195 9829 55 a.u., of Korobov (Phys Rev A 2000, 61, 64503), obtained using the universal (exponential) variational expansion method with complex exponents (Frolov, A. M.; Smith, V. H. Jr. J Phys B Atom Mol Opt Phys 1995, 28, L449). In addition to He, results are also included for the ground 1S states of H?, Li+, Be++, and B+3. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

5.
The structural and electronic properties of fluorene‐phenylene copolymer (FP)n, n = 1–4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD‐DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)n is nonplanar in its ground state while the electronic excitations lead to planarity in its S1 state. Absorption and fluorescence energies were calculated using TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S1 ← S0 electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)n calculated from TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD‐B3LYP/SVP and TD‐B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
This study presents an efficient algorithm to search for the poles of dynamic polarizability to obtain excited states of large systems with nonlocal excitation nature. The present algorithm adopts a homogeneous search with a constant frequency interval and a bisection search to achieve high accuracy. Furthermore, the subtraction process of the information about the detected poles from the total dynamic polarizability is used to extract the undetected pole contributions. Numerical assessments confirmed the accuracy and efficiency of the present algorithm in obtaining the excitation energies and oscillator strengths of all dipole‐allowed excited states. A combination of the present pole‐search algorithm and divide‐and‐conquer‐based dynamic polarizability calculations was found to be promising to treat nonlocal excitations of large systems. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
本文理论上研究了两个系列的噻吩基卟啉衍生物,这种衍生物在可见光区具有大的双光子吸收截面。用密度泛函理论和ZINDO-SOS方法,计算了分子的几何构型、电子结构,单光子和双光子吸收性质。结果显示噻吩单元的数目影响分子的单光子和双光子吸收性质。具有两个或三个噻吩基团的噻吩基卟啉衍生物在较大范围内具有可用于实际应用中的双光子吸收响应,这一性质有利于这类分子在光限幅中的应用。插入乙炔基有利于扩大共轭范围,增加分子的双光子吸收截面。同时,乙炔基团的加入导致了单光子和双光子波长的红移。从高透明性和相对大的非线性光学响应考虑,噻吩基卟啉衍生物是一类有应用前景的双光子吸收材料。  相似文献   

8.
Excited‐state double proton transfer (ESDPT) in the (3‐methyl‐7‐azaindole)‐(7‐azaindole) heterodimer is theoretically investigated by the long‐range corrected time‐dependent density functional theory method and the complete‐active‐space second‐order perturbation theory method. The calculated potential energy profiles exhibit a lower barrier for the concerted mechanism in the locally excited state than for the stepwise mechanism through the charge‐transfer state. This result suggests that the ESDPT in the isolated heterodimer is likely to follow the former mechanism, as has been exhibited for the ESDPT in the homodimer of 7‐azaindole. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Up to now, 3,4‐ethylenedioxythiophene (EDOT) or its modified analogs are indispensable units or subunits in all successful monomers for polythiophene synthesis through solid‐state polymerization (SSP). Here, a more open thiophene‐(CH(R))‐thiophene platform was developed successfully and corresponding poly(bis‐thiophene methine)s were obtained via C–C SSP or melt‐state polymerization (MSP), that is, bulk polymerization. Meanwhile, the observation of quite long effective Br–Br distance of 5.634 Å, which is more than 50% of halogen's double van der Waals radius (2rw), would help us to understand powerful capability of modulation of molecule movement and reaction under SSP. In addition, these polymers were further employed as acid sensors and they show highly sensitive response to HCl, MeSO3H, BF3‐OEt2, and HNO3. The detailed experiment reveals that P1 has the detection limit of 3.35 × 10−5 M for HCl. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1676–1683  相似文献   

10.
The sensitization mechanisms of a pyrromethene dye with a radical‐generating reagent, 3,5,3′,5′‐tetramethylpyrromethene‐BF2 (BH) with 3,3′,4,4′‐tetrakis(t‐butyldioxycarbonyl)benzophenone (BP), in a poly‐ (methylmethacrylate) (PMMA) film were investigated by laser flash phoptolysis using a total reflection cell and single photon counting. From the laser flash photolysis, strong fluorescence was detected though no transient absorption was detected. The fluorescence intensity was significantly decreased with increasing concentration of BP, apparently exhibiting Perrin‐type static quenching at a quenching radius, Rf = 26 Å. From the examination of decay profile using single photon counting, logarithmic plots of fluorescence decay in a PMMA film afforded a nonlinear, convex reduction, corresponding to a streched exponential decay, while the logarithmic plots in acetonitrile showed a linear relationship. With increasing concentration of BH, the fluorescence maximum was shifted to red, and the intensity of fluorescence was significantly reduced. The red shift of fluorescence, the nonlinear fluorescence logarithmic decay and the large reduction in fluorescence indicate a dispersive photoexcited state and a relaxation of excitation energy hopping across an array of sites with Gaussian energy distribution. Moreover, after incorporating BP, the convex logarithmic plots became more steep, and the fluorescence maximum was also shifted to red, exhibiting a nonstatic quenching process competitive to the excitation energy hopping. Thus the sensitization of photoinitiator system containing BH and BP, whose contents were almost same as that in the commercial products, was due to a static quenching process from dispersive singlet excited BH to BP ground state, and the nonstatic quenching process competitive to the excitation energy hopping was minimal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Acylhydrazones is a novel yet underexploited class of molecular switches. In the present paper, we investigated the excited‐state decay of three model systems of acylhydrazones in the gas phase by a combination of electronic structure calculations and Tully's surface hopping dynamic simulations. Our computational results demonstrated that the S2(nNπ*) state decay of the three model systems leads to both the imine‐like photo‐isomerization through the S1(nNπ*)/S0 intersection and population of the S1(nOπ*) state that will cross to the triplet manifold. The position of phenyl substituent was found to have an effect on the ratio of the two S1 states. The present theoretical work provides some understandings of the intramolecular mechanism for de‐population of the excited electronic states of acylhydrazones.  相似文献   

12.
Excited‐state ionization potentials for boron‐like sequence with Z = 5–19 are studied systematically, using the weakest bound electron potential model theory (WBEPM theory) and iso‐spectrum‐level series conception. Nonrelativistic ionization energy is derived from the theory. Relativistic effects are included in the Breit–Pauli approximation. Comparison of the calculated excited‐state ionization potential with available experimental data is carried out for 1s22s22p 2P, 1s22s23s 2S1/2, 1 s22s23p 2P, 1s22s23d 2D5/2, 1s22s24d 2D5/2, 1s22s25d 2D5/2, and 1s22s26d 2D5/2 series. The present results depart from experimental results by no more than 0.133 eV for all 81 results for which experimental data are available. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

13.
The correlation calculation of the electronic structure of PbH is carried out with the generalized relativistic effective core potential (GRECP) and multireference single‐ and double‐excitation configuration interaction (MRD‐CI) methods. The 22‐electron GRECP for Pb is used and the outer core 5s, 5p, and 5d pseudospinors are frozen using the level‐shift technique, so only five external electrons of PbH are correlated. A new configuration selection scheme with respect to the relativistic multireference states is employed in the framework of the MRD‐CI method. The [6, 4, 3, 2] correlation spin–orbit basis set is optimized in the coupled cluster calculations on the Pb atom using a recently proposed procedure, in which functions in the spin–orbital basis set are generated from calculations of different ionic states of the Pb atom and those functions are considered optimal that provide the stationary point for some energy functional. Spectroscopic constants for the two lowest‐lying electronic states of PbH (2Π1/2, 2Π3/2) are found to be in good agreement with the experimental data. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

14.
Excited‐state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2‐(2′‐hydroxyphenyl)imidazole (HPI), 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI), 2‐(2′‐hydroxyphenyl)‐1H‐phenanthro[9,10‐d]imidazole (HPPI) and 2‐(2′‐hydroxyphenyl)‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology. The state‐averaged SA‐CASSCF method was used to optimize their geometry structures of S0 and S1 electronic states, and the CASPT2 calculations were used for the calibration of all the single‐point energies, including the absorption and emission spectra. A reasonable agreement is found between the theoretical predictions and the available experimental spectral data. The forward ESIPT barriers of four target compounds gradually decrease with the increase of molecular size. On the basis of the present calculations, it is a plausible speculation that the larger the size, the faster is the ESIPT rate, and eventually, HPPPI molecule can undergo a completely barrierless ESIPT to the more stable S1 keto form. Additionally, taking HPI as a representative example, the radiationless decays connecting the S0 and S1/S0 conical intersection structures were also studied by constructing a linearly interpolated internal coordinate (LIIC) reaction path. The qualitative analysis shows that the LIIC barrier of HPI in the keto form is remarkably lower than that of its enol‐form, indicating that the former has a big advantage over the latter in the nonradiative process. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
This article reports the synthesis and characterization of a new polythiophene derivative phenoxy‐substituted, the poly[3‐(4‐octylphenoxy)thiophene] (POPOT). The oxidative polymerization was found to yield low molecular weight material, whereas a modified Grignard metathesis (GRIM) yielded polymers of high molecular weights. One‐ and two‐dimensional NMR indicated the latter to be highly regioregular. POPOTs exhibited higher thermal stabilities than equivalent alkoxy‐substituted polythiophenes and exhibited red shifts in the absorption spectra with respect to equivalent. The absorption spectra showed a red shifted λmax at 540 nm in tetrahydrofuran solutions and 580 nm in spin‐coated films, with respect to poly(3‐alkylthiophene)s. A further red shift of 40 nm in going from solution (540 nm) to solid states (580 nm) is correlated with results from density functional theory electronic structure calculations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7505–7516, 2008  相似文献   

16.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

17.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
Sol–gel glass matrices in which organic laser dyes are embedded can be used as the gain medium in solid‐state, continuously tunable lasers. Such lasers are very simple to construct, and potentially very compact and efficient. Unlike the commonly used liquid dye laser systems, solid‐state dye lasers can be made mechanically robust and portable. In this article, the development of sol–gel/dye lasers, including the sol–gel technology, dye properties, and laser operation, is reviewed. In addition, new solid‐state hosts (such as polyurethane/silica ORMOSILs), additional organic dyes (cyanines), and new studies on the stability of the dyes are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Aromatic polyoxadiazole derivatives containing 9,9′‐dioctylfluorene were successfully synthesized via the Suzuki coupling reaction. The oxadiazole moiety in the polymer backbone was linked with the bis(hydroxyphenyl) group in its 2‐position to exhibit a large Stokes shift in the emission spectrum due to the excited‐state intramolecular proton transfer. To prepare the polymer via the Suzuki cross‐coupling reaction, the hydroxyl group in the monomer was protected with the t‐butoxycarbonyl group before polymerization and removed after polymerization to a desirable extent. The polymer with the free hydroxyl group showed a considerable sensitivity for nitroaromatic compounds, exhibiting fluorescence quenching in a chloroform solution. The interaction between the electron‐donating OH group and electron‐deficient nitroaromatic compounds seemed to play a decisive role in fluorescence quenching. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2059–2068, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号