首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of solvent tunes many properties of a molecule, such as its ground and excited state geometry, dipole moment, excitation energy, and absorption spectrum. Because the energy of the system will vary depending on the solvent configuration, explicit solute–solvent interactions are key to understanding solution-phase reactivity and spectroscopy, simulating accurate inhomogeneous broadening, and predicting absorption spectra. In this tutorial review, we give an overview of factors to consider when modeling excited states of molecules interacting with explicit solvent. We provide practical guidelines for sampling solute–solvent configurations, choosing a solvent model, performing the excited state electronic structure calculations, and computing spectral lineshapes. We also present our recent results combining the vertical excitation energies computed from an ensemble of solute–solvent configurations with the vibronic spectra obtained from a small number of frozen solvent configurations, resulting in improved simulation of absorption spectra for molecules in solution.  相似文献   

2.
The extent to which accuracy of electric charges plays a role in protein-ligand docking is investigated through development of a docking algorithm, which incorporates quantum mechanical/molecular mechanical (QM/MM) calculations. In this algorithm, fixed charges of ligands obtained from force field parameterization are replaced by QM/MM calculations in the protein environment, treating only the ligands as the quantum region. The algorithm is tested on a set of 40 cocrystallized structures taken from the Protein Data Bank (PDB) and provides strong evidence that use of nonfixed charges is important. An algorithm, dubbed "Survival of the Fittest" (SOF) algorithm, is implemented to incorporate QM/MM charge calculations without any prior knowledge of native structures of the complexes. Using an iterative protocol, this algorithm is able in many cases to converge to a nativelike structure in systems where redocking of the ligand using a standard fixed charge force field exhibits nontrivial errors. The results demonstrate that polarization effects can play a significant role in determining the structures of protein-ligand complexes, and provide a promising start towards the development of more accurate docking methods for lead optimization applications.  相似文献   

3.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

4.
The quantum chemistry polarizable force field program (QuanPol) is implemented to perform combined quantum mechanical and molecular mechanical (QM/MM) calculations with induced dipole polarizable force fields and induced surface charge continuum solvation models. The QM methods include Hartree–Fock method, density functional theory method (DFT), generalized valence bond theory method, multiconfiguration self‐consistent field method, Møller–Plesset perturbation theory method, and time‐dependent DFT method. The induced dipoles of the MM atoms and the induced surface charges of the continuum solvation model are self‐consistently and variationally determined together with the QM wavefunction. The MM force field methods can be user specified, or a standard force field such as MMFF94, Chemistry at Harvard Molecular Mechanics (CHARMM), Assisted Model Building with Energy Refinement (AMBER), and Optimized Potentials for Liquid Simulations‐All Atom (OPLS‐AA). Analytic gradients for all of these methods are implemented so geometry optimization and molecular dynamics (MD) simulation can be performed. MD free energy perturbation and umbrella sampling methods are also implemented. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The increased interest in sequencing cyanobacterial genomes has allowed the identification of new homologs to both the N-terminal domain (NTD) and C-terminal domain (CTD) of the Orange Carotenoid Protein (OCP). The N-terminal domain homologs are known as Helical Carotenoid Proteins (HCPs). Although some of these paralogs have been reported to act as singlet oxygen quenchers, their distinct functional roles remain unclear. One of these paralogs (HCP2) exclusively binds canthaxanthin (CAN) and its crystal structure has been recently characterized. Its absorption spectrum is significantly red-shifted, in comparison to the protein in solution, due to a dimerization where the two carotenoids are closely placed, favoring an electronic coupling interaction. Both the crystal and solution spectra are red-shifted by more than 50 nm when compared to canthaxanthin in solution. Using molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies of HCP2, we aim to simulate these shifts as well as obtain insight into the environmental and coupling effects of carotenoid–protein interactions.  相似文献   

6.
Combined quantum mechanics/molecular mechanics (QM/MM) calculations were used to investigate the reaction mechanism of taxadiene synthase (TXS). TXS catalyzes the cyclization of geranylgeranyl diphosphate (GGPP) to taxadiene (T) and four minor cyclic products. All these products originate from the deprotonation of carbocation intermediates. The reaction profiles for the conversion of GGPP to T as well as to minor products were calculated for different configurations of relevant TXS carbocation complexes. The QM region was treated at the M06-2X/TZVP level, while the CHARMM27 force field was used to describe the MM region. The QM/MM calculations suggest a reaction pathway for the conversion of GGPP to T, which slightly differs from previous proposals regarding the number of reaction steps and the conformation of the carbocations. The QM/MM results also indicate that the formation of minor products via water-assisted deprotonation of the carbocations is highly exothermic, by about −7 to −23 kcal/mol. Curiously, however, the computed barriers and reaction energies indicate that the formation of some of the minor products is more facile than the formation of T. Thus, the present QM/MM calculations provide detailed insights into possible reaction pathways and into the origin of the promiscuity of TXS, but they do not reproduce the product distribution observed experimentally. © 2019 Wiley Periodicals, Inc.  相似文献   

7.
The infrared(IR) spectra of the N-methylacetamide molecule in water are calculated by using the MD simulation with high-level QM/MM corrections. The B3LYP and MP2 levels with 6-311++G** basis set are used for the QM region, respectively. Our results show all IR spectra at the B3LYP level are well consistent with the corresponding MP2 results. A dynamical charge fluctuation is observed for each atom along the simulation trajectories due to the electrostatic polarization(EP) effects from surrounding solvent environment. We find that the QM/MM corrected IR spectra satisfactorily reproduce the experimental vibrational features of amide I–III modes.  相似文献   

8.
Here we improved our hybrid QM/MM methodology (Houjou et al. J Phys Chem B 2001, 105, 867) for evaluating the absorption maxima of photoreceptor proteins. The renewed method was applied to evaluation of the absorption maxima of several retinal proteins and photoactive yellow protein. The calculated absorption maxima were in good agreement with the corresponding experimental data with a computational error of <10 nm. In addition, our calculations reproduced the experimental gas-phase absorption maxima of model chromophores (protonated all-trans retinal Schiff base and deprotonated thiophenyl-p-coumarate) with the same accuracy. It is expected that our methodology allows for definitive interpretation of the spectral tuning mechanism of retinal proteins.  相似文献   

9.
This perspective article mainly focuses on the development and applications of a pseudobond ab initio QM/MM approach to study enzyme reactions. The following aspects of methodology development are discussed: the approaches for the QM/MM covalent boundary problem, an efficient iterative optimization procedure, the methods to determine enzyme reaction paths, and the approaches to calculate free energy change in enzyme reactions. Several applications are described to illustrate the capability of the methods. Finally, future directions are discussed.  相似文献   

10.
During the past years, the use of combined quantum-classical, QM/MM, methods for the study of complex biomolecular processes, such as enzymatic reactions and photocycles, has increased considerably. The quality of the results obtained from QM/MM calculations is largely dependent on five aspects to be considered when setting up a molecular model: the QM Hamiltonian, the MM Hamiltonian or force field, the boundary and coupling between the QM and MM regions, the size of the QM region and the boundary condition for the MM region. In this study, we systematically investigate the influence of a variation of the molecular mechanics force field and the size of the QM region in QM/MM MD simulations on properties of the photoactive part of the blue light photoreceptor protein AppA. For comparison, we additionally performed classical MD simulations and studied the effect of a variation of the type of spatial boundary condition. The classical boundary conditions and the force field used in a QM/MM MD simulation are shown to have non-neglegible effects upon the structural and energetic properties of the protein which makes it advisable to minimize computational artifacts in QM/MM MD simulations by application of periodic boundary conditions and a thermodynamically calibrated force field. A comparison of the structural and energetic properties of MD simulations starting from two alternative, different X-ray structures for the blue light utilizing flavin protein in its dark state indicates a slight preference of the two force fields used for the so-called Anderson structure over the Jung structure.  相似文献   

11.
邹惠园  赵东霞  杨忠志 《化学学报》2013,71(11):1547-1552
应用量子力学(QM)与ABEEM浮动电荷力场(ABEEM/MM)相结合的方法研究了抗癌药物NAMI-A在水溶液中的结构性质. 所有的结构优化都是在DFT的B3LYP方法下采用6-31G(d,p)和LanL2DZ基组完成的, 没有加入任何限制性条件. 结果表明, 优化得到的NAMI-A构型受不同环境及方法的影响均有变化. 与气相中得到的构型相比, QM/MM迭代优化得到构型要比PCM的构型变化更明显. QM/MM (ABEEM/MM)迭代优化得到的NAMI-A构型比QM/MM (OPLS-AA)的变化要小. 总之, 溶剂通过极化效应对NAMI-A结构、电荷分布及径向分布函数等性质均有影响, 客观地处理极化效应才能正确地反映QM区的性质.  相似文献   

12.
13.
Multi-scale quantum-mechanical/molecular-mechanical(QM/MM) and large-scale QM simulation provide valuable insight into enzyme mechanism and structure-property relationships. Analysis of the electron density afforded through these methods can enhance our understanding of how the enzyme environment modulates reactivity at the enzyme active site. From this perspective, tools from conceptual density functional theory to interrogate electron densities can provide added insight into enzyme function. We recently introduced the highly parallelizable Fukui shift analysis(FSA) method, which identifies how frontier states of an active site are altered by the presence of an additional QM residue to identify when QM treatment of a residue is essential as a result of quantum-mechanically affecting the behavior of the active site. We now demonstrate and analyze distance and residue dependence of Fukui function shifts in pairs of residues representing different non-covalent interactions. We also show how the interpretation of the Fukui function as a measure of relative nucleophilicity provides insight into enzymes that carry out S_N2 methyl transfer. The FSA method represents a promising approach for the systematic, unbiased determination of quantum mechanical effects in enzymes and for other complex systems that necessitate multi-scale modeling.  相似文献   

14.
To overcome the limitation of conventional docking methods which assume fixed charge model from force field parameters, combined quantum mechanics/molecular mechanics (QM/MM) method has been applied to docking as a variable charge model and shown to exhibit improvement on the docking accuracy over fixed charge based methods. However, it has also been shown that there are a number of examples for which adoption of variable‐charge model fails to reproduce the native binding modes. In particular, for metalloproteins, previously implemented method of QM/MM docking failed most often. This class of proteins has highly polarized binding sites at which high‐coordinate‐numbered metal ions reside. We extend the QM/MM docking method so that protein atoms surrounding the binding site along with metal ions are included as quantum region, as opposed to only ligand atoms. This extension facilitates the required scaling of partial charges on metal ions leading to prediction of correct binding modes in metalloproteins. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

15.
A new version of the QM/MM method, which is based on the effective fragment potential (EFP) methodology [Gordon, M. et al., J Phys Chem A 2001, 105, 293] but allows flexible fragments, is verified through calculations of model molecular systems suggested by different authors as challenging tests for QM/MM approaches. For each example, the results of QM/MM calculations for a partitioned system are compared to the results of an all-electron ab initio quantum chemical study of the entire system. In each case we were able to achieve approximately similar or better accuracy of the QM/MM results compared to those described in original publications. In all calculations we kept the same set of parameters of our QM/MM scheme. A new test example is considered when calculating the potential of internal rotation in the histidine dipeptide around the C(alpha)bond;C(beta) side chain bond.  相似文献   

16.
Conventional combined quantum mechanical/molecular mechanical (QM/MM) methods lack explicit treatment of Pauli repulsions between the quantum‐mechanical and molecular‐mechanical subsystems. Instead, classical Lennard‐Jones (LJ) potentials between QM and MM nuclei are used to model electronic Pauli repulsion and long‐range London dispersion, despite the fact that the latter two are inherently of quantum nature. Use of the simple LJ potential in QM/MM methods can reproduce minimal geometries and energies of many molecular clusters reasonably well, as compared to full QM calculations. However, we show here that the LJ potential cannot correctly describe subtle details of the electron density of the QM subsystem because of the neglect of Pauli repulsions between the QM and MM subsystems. The inaccurate electron density subsequently affects the calculation of electronic and magnetic properties of the QM subsystem. To explicitly consider Pauli interactions with QM/MM methods, we propose a method to use empirical effective potentials on the MM atoms. The test case of the binding energy and magnetic properties of a water dimer shows promising results for the general application of effective potentials to mimic Pauli repulsions in QM/MM calculations. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
18.
Aminoacyl-tRNA synthetases are centrally important enzymes in protein synthesis. We have investigated threonyl-tRNA synthetase from E. coli, complexed with reactants, using molecular mechanics and combined quantum mechanical/molecular mechanical (QM/MM) techniques. These modeling methods have the potential to provide molecular level understanding of enzyme catalytic processes. Modeling of this enzyme presents a number of challenges. The procedure of system preparation and testing is described in detail. For example, the number of metal ions at the active site, and their positions, were investigated. Molecular dynamics simulations suggest that the system is most stable when it contains only one magnesium ion, and the zinc ion is removed. Two different QM/MM methods were tested in models based on the findings of MM molecular dynamics simulations. AM1/CHARMM calculations resulted in unrealistic structures for the phosphates in this system. This is apparently due to an error of AM1. PM3/CHARMM calculations proved to be more suitable for this enzyme system. These results will provide a useful basis for future modeling investigations of the enzyme mechanism and dynamics.  相似文献   

19.
We report a QM augmented QM/MM study on the coordination of the tetrahydroxouranylate ion in aqueous solution. QM/MM geometry optimizations followed by full QM single-point calculations on the optimized structures show that a hexa-coordinated structure is more stable than the hepta-coordinated structure by 43 kJ/mol. Charge transfer of the tetrahydroxouranylate to the solvating water molecules is relatively modest, and can be modeled by including a solvation layer consisting of 12 explicit water molecules.  相似文献   

20.
The aqueous solvation of the uranylfluoride complex [UO(2)F(4) (2-)] was studied using full quantum mechanical (QM) and hybrid QM/molecular mechanics (MM) methods. Inclusion of a complete first solvation shell was found necessary to reproduce the experimentally observed heptacoordination of uranium. An efficient and accurate computational model is proposed that consists of structure optimization of the coordinated uranium complex as QM region, followed by single-point full QM calculations to compute relative energies. This method is proven feasible for studies of large solvated actinide complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号