首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absolute configuration of (S)-(-)-paraconic acid is correctly assigned on the basis of ab initio calculations of the specific optical rotation (OR) at the sodium D line, carried out both in vacuum and in methanol. Density functional theory (DFT) and M?ller-Plesset second-order perturbation theory (MP2) are used to determine the most stable conformational structures, whose OR values are then calculated using DFT linear response theory and London atomic orbitals. The total OR is obtained by averaging these values using the population fractions determined from Boltzmann's statistics. The total OR of the MP2 structures has the correct sign both in vacuum and in solution, whereas only the solvent-relaxed DFT structures correctly reproduce the experimental sign. The strong solvent effect on the total OR is shown to arise primarily due to the variations in the relative energies of the various conformations.  相似文献   

2.
Ab initio methods at the levels HF/cc‐pVDZ, HF/6‐31G(d,p), MP2/cc‐pVDZ, and MP2/6‐31G(d,p), as well as methods based on density functional theory (DFT) employing the hybrid functional B3LYP with the basis sets cc‐pVDZ and 6‐31G(d,p), have been applied to study the conformers of 2,6‐distyrylpyridine. Bond distances, bond angles, and dihedral angles have been calculated at the B3LYP level. The calculated values were in good agreement with those measured by X‐ray diffraction analysis of 2,6‐distyrylpyridine. The values calculated using the Hartree‐Fock method and second‐order perturbation theory (MP2) were inconsistent. The optimized lowest‐energy geometries were calculated from the reported X‐ray structural data by the B3LYP/cc‐pVDZ method. Three conformations, A, B, and C, were proposed for 2,6‐distyrylpyridine. Calculations at the three levels of theory indicated that conformation A was the most stable structure, with conformations C and B being higher in energy by 1.10 and 2.57 kcal/mol, respectively, using the same method and basis function. The same trend in the relative energies of the three possible conformations was observed at the two levels of theory and with the different basis sets employed. The reported X‐ray data were utilized to optimize total molecular energy of conformation A at the different calculation levels. The bond lengths, bond angles, and dihedral angles were then obtained from the optimized geometries by ab initio methods and by applying DFT using the two basis functions cc‐pVDZ and 6‐31G(d,p). The values were analyzed and compared. The calculated total energies, the relative energies of the molecular orbitals, the gap between them, and the dipole moment for each conformational structure proposed for 2,6‐distyrylpyridine are also reported. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

3.
All the possible uranium(VI, V, IV) oxides, fluorides and oxofluorides were studied theoretically by using density functional theory (DFT) in the generalised gradient approximation (GGA), and three different relativistic methods (all-electron scalar four component Dyall RESC method (AE), relativistic small-core ECPs, and zeroth order regular approximation ZORA). In order to test different correlation methods, for the two former relativistic methods hybrid DFT, and, for the AE method, MP2 molecular orbital calculations were performed as well. Single-point AE-CCSD(T) energies were calculated on MP2 geometries as well. Energies of the uranium(VI) and (V) oxofluorides dissociation, uranium(VI) fluoride hydrolysis and oxofluoride disproportionation were calculated and compared against the available experimental thermochemical data. AE-CCSD(T) energies were the closest to the experiment. For GGA DFT methods, all the relativistic methods used yield similar results. For thermochemistry, the best quantitative agreement with the experimental and CCSD(T) values for both U=O and U-F bond strengths was obtained with hybrid DFT methods, provided that a reliable basis set was used. Both the GGA DFT and MP2 MO methods show overbinding of these bonds; moreover, this overbinding was found to be not uniform but strongly dependent on the coordination environment of the uranium atom in each case. U=O vibrational frequencies given by hybrid DFT, however, are systematically overestimated, and are better reproduced by GGA DFT; MP2 values usually fall in-between. Reaction enthalpies, U=O frequencies and complex geometries given by the PBE, MPBE, BPBE, BLYP and OLYP GGA functionals are quite similar, with OLYP performing slightly better than the others but still not as good as hybrid DFT. The geometries of the molecules are found to be influenced by the following factors: the inverse transinfluence (ITI) of the oxygen ligand and, for U(V), and U(IV), the Jahn-Teller distortion.  相似文献   

4.
The conformational behavior and structural stability of dichloro and difluoromethyl-sulfonyl isocyanates were investigated by quantum mechanical DFT and ab initio calculations. The 6-311 + + G** basis set was employed to include polarization and diffuse functions in the calculation at B3LYP and MP2 levels. The molecules were found to exist in a mixture of trans-gauche and gauche-gauche conformations at ambient temperatures. From the calculations the isocyanate NCO moiety was predicted to nearly eclipse one of the sulfony S=O bonds in the two stable conformers of both molecules. The potential scans for the rotations of the two NCO and CX2H rotors were calculated from which the rotational barriers could be estimated. The vibrational frequencies, potential energy distributions, IR intensities as well as depolarization ratios were calculated.  相似文献   

5.
A systematic all electron post Hartree-Fock as well as density functional theory (DFT) based calculations for the polarizability and binding energy of sodium metal clusters have been performed and an in-depth analysis of the discrepancy between the experimental and theoretical results is presented. A systematic investigation for the assessment of different DFT exchange-correlation functionals in predicting the polarizability values has also been reported. All the pure DFT functionals have been found to considerably underestimate the calculated polarizability values as compared to the MP2 results. DFT calculations using the full Hartree-Fock exchange along with one-parameter progressive correlation functional have, however, been shown to yield results in good agreement with the MP2 and experimental results. The possible sources of error present in the experimental measurements as well as in the different theoretical methods have also been analyzed. One of the most important conclusions of the present study is that the effect of electron correlation plays a significant role in determining the polarizability of the clusters and the MP2 method can be considered to be one of the most reliable methods for their prediction. It has also been noted that the polarizability value of the lower member clusters (Na2 and Na4) calculated by highly sophisticated methods such as, CCSD and CCSD(T) are found to be very close to the corresponding MP2 values. The polarizability and the binding energy of the clusters are found to be inversely related to each other and their correlation is rationalized by invoking the minimum polarizability principle. A good linear correlation between the polarizability and volume of the cluster has also been found to exist.  相似文献   

6.
7.
Harmonic vibrational frequencies of HN3 and CH3N3 molecules and their several isotopomers are calculated using HF, MP2 and five popular density functional theory (DFT) methods. On the basis of the comparison between calculated and experimental results, assignments of fundamental vibrational modes arc examined. HF and MP2 results are in bad agreement with experimental values. Of the five DFT methods, BLYP reproduces the observed fundamental frequencies the most satisfactorily. Two hybrid DFT methods are found to yield frequencies generally higher than the observed fundamental frequencies. The results indicate that BLYP calculation is a very promising approach for understanding the observed spectral features.  相似文献   

8.
As the starting point for the modelling of more complex cases, we determined the ability of the semiempirical AM1 method and density functional theory (B3LYP) to describe the structural, conformational and thermodynamic properties of acetohydroxamic acid at a level comparable to MP2. We found that AM1 is unable to reproduce the intramolecular hydrogen bond of the molecule as well as the conformational behaviour. On the other hand, the structure and harmonic frequencies obtained at the DFT and MP2 levels are quite similar. However, for these two last methods the situation is dramatically different with respect to the inversion and rotation barriers. Here, the DFT results differ from the MP2 values by 50% for the nitrogen inversion and 32% for the methyl rotation, decreasing to 4% for the OH rotation. A similar behaviour is observed in the N-substituted compound CH3CONCH3OH. Determination of the anharmonic energy levels for the methyl group torsion in the acetohydroxamic acid shows clear differences between the DFT and MP2 results. This fact is important from the spectroscopic point of view, but also for the statistical computation of thermodynamic properties. Another interesting result relates to the time of calculation. Our data show that the relative time efficiency (wall time) of DFT respect to MP2 depends strongly on the RAM memory available, as a consequence of the asymptotic temporal and spatial complexity of the algorithms involved.  相似文献   

9.
The vibrational spectra and ring-puckering potential energy functions of 1,4-cyclohexadiene, 4H-pyran and 1,4-dioxin have been examined using a density functional theory (DFT) method as well as the Hartree–Fock (HF) and second-order Møller–Plesset (MP2) methods. The calculated vibrational frequencies and potential energy functions of those molecules have been compared with previously reported experimental data and MM3 results. For all three molecules, the DFT method using Becke's three-parameter functional (B3LYP) has led to the prediction of more accurate vibrational frequencies than the HF and MP2 methods. The enlargement of the basis set at the B3LYP levels has improved the accuracy of calculated vibrational frequencies. In particular, the C–O–C=C torsional force field parameters obtained from the B3LYP method have correctly predicted the ring-puckering potential energy functions of the oxygen-containing analogues, 4H-pyran and 1,4-dioxin, which could not be done by the MM3 method.  相似文献   

10.
[structure: see text] We report the first determinations of the absolute configurations (ACs) of chiral molecules using discrete frequency, transparent spectral region optical rotations calculated using density functional theory (DFT). The ACs of 2H-naphtho[1,8-bc]thiophene 1-oxide (3), naphtho[1,8-cd]-1,2-dithiole 1-oxide (4), and 9-phenanthryl methyl sulfoxide (5) are determined by comparison of their specific rotations to values calculated via the time-dependent DFT/gauge-invariant atomic orbital (TDDFT/GIAO) methodology using the B3LYP functional and the aug-cc-pVDZ basis set.  相似文献   

11.
Twelve conformations of a chiral donor-acceptor (charge-transfer) dyad and six conformations of its dimer complex were structurally optimized by using the Kohn-Sham density functional theory (BLYP/TZV2P) incorporating a recently developed empirical correction scheme that uses C6/R6 potentials for van der Waals interactions (DFT-D). Subsequent time-dependent DFT calculations with BH-LYP and B3-LYP functionals (with triple-zeta basis set) were performed to obtain theoretical circular dichroism (CD) spectra. The experimental CD spectra obtained independently were properly reproduced by averaging the calculated spectra of individual conformers according to a Boltzmann population derived from single-point SCS-MP2 energies. The optical rotations of the monomer were also calculated by using the same functionals with an aug-cc-pVDZ basis set. Dielectric continuum solvation models (COSMO) applied to correct the relative energies from the isolated molecule calculations resulted in conformer distributions that piled the same or even poorer level of agreement with the experimental CD spectrum. Our results clearly show the advantage of the DFT-D method for the geometry optimization of large systems with donor-acceptor interactions and the TD-DFT/BH-LYP calculations for reproducing the experimental CD spectra. As compared with the calculated optical rotations, the wealthy information embedded in the experimental/calculated CD spectra is requisite for the configurational and/or conformational analyses of relatively large and flexible chiral organic molecules in solution.  相似文献   

12.
The molecular structure and conformational stability of CH2CHCH2X (X=F, Cl and Br) molecules were studied using ab initio and density functional theory (DFT) methods. The molecular geometries of 3-fluoropropene were optimized employing BLYP and B3LYP levels of theory of DFT method implementing 6-311+G(d,p) basis set. The MP2/6-31G*, BLYP and B3LYP levels of theory of ab initio and DFT methods were used to optimize the 3-chloropropene and 3-bromopropene molecules. The structural and physical parameters of the molecules are discussed with the available experimental values. The rotational potential energy surface of the above molecules were obtained at MP2/6-31G* and B3LYP/6-311+G(d,p) levels of theory. The Fourier decomposition of the rotational potentials were analyzed. The HF/6-31G* and MP2/6-31G* levels of theory have predicted the cis conformer as the minimum energy structure for 3-fluoropropene, which is in agreement with the experimental values, whereas the BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory reverses the order of conformation. The ΔE values calculated for 3-chloropropene at MP2/6-31G*, BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory show that the gauche form is more stable than the cis form, which is in agreement with the experimental value. The same levels of theory have also predicted that the gauche form is stable than cis for 3-bromopropene molecule. The maximum hardness principle has been able to predict the stable conformer of 3-fluoropropene at HF/6-31G* level of theory, but the same level of theory reverses the conformational stability of 3-chloropropene and 3-bromopropene molecules and MP2/6-31G* level of theory predicted the stable conformer correctly.  相似文献   

13.
A detailed analysis of the vibrational spectra of carbonyl cyanide, diethynyl ketone and acetyl cyanide has been conducted in harmonic and anharmonic approximations. RHF, MP2 and density functional theory (DFT) methods with 6-311++G(2df,2p) basis sets and B3LYP functionals have been employed. Spectroscopic constants such as anharmonicity constants, rotational and centrifugal distortion constants, rotation-vibration coupling constants and Coriolis coupling coefficients have been calculated for each molecule and compared with the experimental data, where available. A close agreement between the calculated and experimental values of the spectroscopic constants has been obtained. Complete assignments have been provided to the fundamental bands, overtones and combination tones of the molecules. Density functional theory based anharmonic frequencies compare well with the experimental frequencies within +/-18 cm(-1) on an average. RHF and MP2 methods, however, give much higher values for the frequencies that need scaling even in the anharmonic approximation.  相似文献   

14.
15.
Activation barriers and reaction energetics for the three main classes of 1,3-dipolar cycloadditions, including nine different reactions, were evaluated with the MPW1K and B3LYP density functional methods, MP2, and the multicomponent CBS-QB3 method. The CBS-QB3 values were used as standards for 1,3-dipolar cycloaddition activation barriers and reaction energetics, and the density functional theory (DFT) and MP2 methods were benchmarked against these values. The MPW1K/6-31G* method and basis set performs best for activation barriers, with a mean absolute deviation (MAD) value of 1.1 kcal/mol. The B3LYP/6-31G* method and basis set performs best for reaction enthalpies, with a MAD value of 2.4 kcal/mol, while the MPW1K method shows large errors for reaction energetics. The MP2 method gives the expected systematic underestimation of barriers. Concerted and nearly synchronous transition structures are predicted by all DFT and MP2 methods. Also reported are revised estimated 0 K experimental activation enthalpies for a standard set of hydrocarbon pericyclic reactions and updated comparisons to experiment for DFT, ab initio, and multicomponent methods. B3LYP and MPW1K methods with MAD values of 1.5 and 2.1 kcal/mol, respectively, fortuitously outperform the multicomponent CBS-QB3 method, which has a MAD value of 2.3. The MAD value of the O3LYP functional improves to 2.4 kcal/mol from the previously reported 3.0 kcal/mol.  相似文献   

16.
The reaction energy profile for H2 + OH → H + H2O was computed using HF, MP2, MP4, QCISD, G1, G2, and G2MP2 ab initio methods. In addition, the B3LYP, B3P86, B3PW91, BLYP, BP291, and SVWN density functional theory (DFT) methods were also used. All the ab initio methods, with the exception of the G series, produced much higher activation barriers and heats of reaction than the experimental values. On the other hand, the DFT methods produced negative forward and reverse barriers which were too low, with the exception of the hybrid DFT methods. The G2 ab initio method generated energies which deviated from the experimental values by ∼ 1 kcal/mol and therefore should be considered a very accurate computational method. The hybrid DFT methods produced positive forward reaction barriers with energies that were 2–4 kcal/mol lower than the experimental values. The geometries of the transition state and energies computed by the ab initio and DFT methods were compared. These results suggest that, in the hybrid exchange functional, the portion of the Slater exchange term should be increased. This may be the reason why the computed energies were too low. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 639–644, 1997  相似文献   

17.
We describe an implementation of the cluster-in-molecule(CIM) resolution of the identity(RI) approximation second-order M?ller–Plesset perturbation theory(CIM-RI-MP2), with the purpose of extending RI-MP2 calculations to very large systems. For typical conformers of several large polypeptides, we calculated their conformational energy differences with the CIM-RI-MP2 and the generalized energy-based fragmentation MP2(GEBF-MP2) methods, and compared these results with the density functional theory(DFT) results obtained with several popular functionals. Our calculations show that the conformational energy differences obtained with CIM-RI-MP2 and GEBF-MP2 are very close to each other. In comparison with the GEBF-MP2 and CIM-RI-MP2 relative energies, we found that the DFT functionals(CAM-B3LYP-D3, LC-?PBE-D3, M05-2X, M06-2X and ?B97XD) can give quite accurate conformational energy differences for structurally similar conformers, but provide less-accurate results for structurally very different conformers.  相似文献   

18.
Proton affinities and intrinsic basicities for nitrogen and oxygen protonation in the gas phase of the amino acids glycine and alanine were calculated using density functional theory (DFT) and ab initio methods at different levels of theory from Hartree-Fock (HF) to G2 approximations. All methods gave good agreement for proton affinities for nitrogen protonation for both amino acids. However, dramatic differences were found between DFT, MP4//MP2, and G2 results on one hand, and MP4//HF results on the other to the calculation of structural and energetic characteristics of oxygen protonation in glycine and alanine. An investigation into the source of these differences revealed that electron correlation effects are chiefly responsible for the differences in calculated oxygen proton affinities between the various methods. It has been found that proton transfer between nitrogen and oxygen protonation sites in both amino acids occurs without a transfer path barrier when correlated methods were used to calculate the path energetics.  相似文献   

19.
The gauche and trans rotamers of 1,2-dicyanoethane, novel 1,2-dicyanodisilane and cyano(cyanomethyl)silane have been studied theoretically in the gas phase. The methods used are second order M?ller-Plesset theory (MP2) and density functional theory (DFT). The basis set used is 6-311++G(d,p) for all atoms. B3LYP is the functional used for the DFT method and G2/MP2 calculation has also carried out using the MP2 optimised structure. All calculations have been done using Gaussian 03W. All structures have been fully optimised and the optimised geometries, dipole moments, moment of inertia and energies are reported. Energies of the optimised structures have been used to obtain the energy difference (DeltaE) between the trans and gauche rotamers. The optimised structures have been used for calculations of vibrational frequencies and these frequencies are reported with appropriate assignments. The computed parameters for 1,2-dicyanoethane compare satisfactorily with experimental literature values. However, the literature for 1,2-dicyanodisilane and cyano(cyanomethyl)silane, in terms of conformational studies, is limited and therefore the data of this work should also be appropriate for them. The results indicate that in general, the energy difference for these molecules is in the order 1,2-dicyanoethane>cyano(cyanomethyl)silane>1,2-dicyanodisilane.  相似文献   

20.
This study aims to present a detailed theoretical investigation of noncovalent intermolecular interactions between different π-π stacking phenothiazine derivatives and between different alkane chains varying from propane to decane. Second-order M?ller-Plesset perturbation (MP2), coupled cluster (CC), and density functional (DFT) theories were the quantum chemistry methods used in our calculation. For MP2 and CC methods, the density-fitting and local approximations were taken into account, while in the case of DFT, the M06 and M06-2x hybrid meta-GGA exchange-correlation functionals as well as the semiempirical correction to the DFT functional for dispersion (BLYP-D) was considered. The results obtained with the aforementioned methods were compared with the potential energy curve given by the DF-SCSN-LMP2 theory considered as benchmark. For all these calculations, the correlation-consistent basis sets of cc-pVNZ (where N = D, T, Q) were used. In addition, potential energy curves built using the semiempirical PM6-D2 and the MM3 molecular force field methods were also compared with the benchmark curve and their efficiency was discussed. As the next step, several geometry conformations were investigated for both phenothiazine derivatives and alkane chain dimers. It was found that the conformational stability of these molecular systems is exclusively given by the dispersion-type electron correlation effects. The density functional tight-binding (DFTB) method applied for dimer structures was compared with the results obtained by the higher level local perturbation theory method, and based on these conclusions larger phenothiazine derivative oligomers structures were investigated. Finally, the optimal configuration of the complex molecular systems built by phenothiazine derivative, alkane chain fragments, and thiol groups was determined, and their self-assembling properties were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号