首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vapor phase decomposition (VPD) is a pretreatment technique for collecting trace metal contaminants on the surface of a Si wafer. Such trace metals can be identified and quantified by inductively coupled plasma mass spectrometry (ICP‐MS) or graphite furnace atomic absorption spectroscopy (GF‐AAS). However, the analytical results can be influenced by the Si‐matrix in the VPD samples. This article discusses the approaches to eliminate the interference caused by Si‐matrix. When the thickness of oxide film on wafer surface is less than 100 Å, the quantification results of ICP‐MS analysis will not be affected by Si‐matrix in the VPD samples. Except this, the Si‐matrix must be removed before analysis. An improved heating pretreatment approach has been adopted successfully to eliminate the Si‐matrix. For GF‐AAS analysis, the Si‐matrix will influence the sodium and aluminum analyses. Adding HNO3 to the graphite furnace tubing after sample injection could also eliminate the interference caused by the Si‐matrix. The method detection limits (MDLs) of VPD‐GF‐AAS and VPD‐ICP‐MS range from 0.04 to 0.55 × 1010 atoms cm?2 and 0.05 to 1.73 × 109 atoms cm?2, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Rate constants for several intermediate steps in the OH‐initiated oxidation of isoprene were determined using laser‐photolysis/laser‐induced fluorescence of OH radicals at total pressures between 3 and 4 Torr at 295 K. The rate constant for decomposition of the hydroxyalkoxy radical was determined to be (3.0 ± 0.5) × 104 s?1 in this pressure range, which is in fair agreement with previous work. The presence of a prompt alkoxy decomposition pathway was also investigated and found to contribute less than 10% to the total hydroxyalkoxy radical decomposition. The rate constant for the reaction of the hydroxyperoxy radical with NO was determined to be (2.5 ± 0.5) × 10?11 cm3 molecule?1 s?1, which is moderately higher than previously reported. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 255–261, 2002  相似文献   

3.
The branching ratio of unimolecular decomposition can be evaluated by solving the rate equations. Recent advances in automated reaction path search methods have enabled efficient construction of the rate equations based on quantum chemical calculations. However, it is still difficult to solve the rate equations composed of hundreds or more elementary steps. This problem is especially serious when elementary steps that occur in highly different timescales coexist. In this article, we introduce an efficient approach to obtain the branching ratio from a given set of rate equations. It has been derived from a recently proposed rate constant matrix contraction (RCMC) method, and termed full‐RCMC (f‐RCMC). The f‐RCMC gives the branching ratio without solving the rate equations. Its performance was tested numerically for unimolecular decomposition of C3H5 and C4H5. Branching ratios obtained by the f‐RCMC precisely reproduced the values obtained by numerically solving the rate equations. It took about 95 h to solve the rate equations of C4H5 consisting of 234 elementary steps. In contrast, the f‐RCMC gave the branching ratio in less than 1 s. The f‐RCMC would thus be an efficient alternative of the conventional kinetic simulation approach. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
2‐(Dinitromethylene)‐1,3‐diazacycloheptane (DNDH) was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,4‐diaminoethane in NMP. Thermal decomposition behavior of DNDH was studied under the non‐isothermal conditions with DSC method, and presents only one intensely exothermic decomposition process. The kinetic equation of the decomposition reaction is dα/dT=1033.88×3α2/3exp(−3.353×105/RT)/β. The critical temperature of thermal explosion is 215.97°C. Specific heat capacity of DNDH was studied with micro‐DSC method and theoretical calculation method, and the molar heat capacity is 215.40 J·mol−1·K−1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be 92.07 s. DNDH has same thermal stability to FOX‐7.  相似文献   

5.
This international standard specifies chemical methods for the collection of iron and/or nickel from the surface of silicon‐wafer working reference materials by the vapour‐phase decomposition method or the direct acid droplet decomposition method. The determination of the elements collected may be carried out by total‐reflection x‐ray fluorescence spectroscopy, as well as by graphite‐furnace atomic absorption spectroscopy or inductively coupled plasma mass spectroscopy. This international standard applies to iron and/or nickel atomic surface densities from 6 × 109 to 5 × 1011 atoms cm?2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A method is presented that allows for retrieving 1D spectra of the individual components of a mixture from a sparsely acquired 2D‐TOCSY spectrum. The decomposition of the 2D‐TOCSY data into pure 1D traces is achieved using a non‐negative matrix factorization algorithm, also known as multivariate curve resolution analysis. Here, we show that the algorithm can be applied to data processed in the direct dimension only. Thus, our method can be applied to non‐linearly sampled experiments or data acquired with few indirect points. An example is shown for the spectra of a mixture of six amino acids, acquired in 15 min. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A matrix comprising iridium nanoparticles and 1‐butyl‐3‐methylimidazolium tetrafluoroborate ionic liquid (Ir‐BMI.BF4) supported in montmorillonite (MMT) was obtained through an efficient incorporation process. This modified clay matrix (Ir‐BMI.BF4‐MMT) was used for the immobilization of the enzymes laccase (LAC) and polyphenol oxidase (PPO) and employed in the construction of a bi‐enzymatic biosensor for determination of rutin by square‐wave voltammetry. Under optimized conditions, the analytical curve showed a linear range for rutin concentrations from 9.17×10?8 to 3.10×10?6 mol L?1 with a detection limit of 3.09×10?8 mol L?1. The method was successfully applied to the determination of rutin content in pharmaceutical samples.  相似文献   

8.
A multilayer hierarchical alternating least square nonnegative matrix factorization approach has been applied to blind decomposition of low‐dimensional multi‐spectral image. The method performs blind decomposition exploiting spectral diversity and spatial sparsity between materials present in the image and, unlike many blind source separation methods, is invariant with respect to statistical (in)dependence among spatial distributions of the materials. As opposed to many existing blind source separation algorithms, the method is capable of estimating the unknown number of materials present in the image. This number can be less than, equal to, or greater than the number of spectral bands. The method is validated on underdetermined blind source separation problems associated with blind decomposition of experimental red‐green‐blue images composed of four materials. Achieved performance has been superior when compared against methods based on minimization of the ℓ1‐norm: linear programming and interior‐point methods. In addition to tumor demarcation, as demonstrated in the paper, other areas that can also benefit from the proposed method include cell, chemical, and tissue imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
汪敦佳  方正东  魏先红 《中国化学》2005,23(12):1600-1606
A new polyoxometalate (CPFX·HCl)3H4SiW12O40·10H2O was prepared from ciprofloxacin hydrochloride and H4SiW12O40·nH2O in aqueous solution, and characterized by elemental analysis, IR spectra and DTA-TG-DTG techniques. The IR spectrum confirmed the presence of Keggin structure and the characteristic functional group for ciprofloxacin in the compound. The TG-DTA-DTG curves showed that its thermal decomposition was a four-step process consisting of simultaneous collapse of Keggin type structure. The residue of decomposition was the mixture of WO3 and SiO2, confirmed by X-ray diffraction and IR spectroscopy. The decomposition mechanism and nonisothermal kinetic parameters of the polyoxometalate were obtained from an analysis to the TG-DTG curves by the single scanning methods (the Achar method and Coats-Redfern method) and the multiple scanning methods (the Kissinger method, Flynn-Wall-Ozawa method and Starink method). The results indicate that the kinetic equationswith parameters describing the thermal decomposition reaction are dα/dt=6.65×10^6[3(1-α)^2/3]e^-10495.5/T with E=87.26 kJ/mol and A=6.65×10^6 s^-1 for the second step,dα/dt=7.01×10^9(1-α)e^-18770.7/T with E=156.06 kJ/mol and A=7.01×10^9 s^-1 for the third step,dα/dt=9.77×10^43[(1-α)^2]e^-88980.0/T with E=739.78 kJ/mol and A=9.77×10^43 s^-1 for the fourth step.  相似文献   

10.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

11.
TG-DTG technique and Harcourt-Esson integrated equation were used to study the dehydration process of zinc phosphate tetrahydrate α-Zn3(PO4)2·4H2O nanoparticle and its thermal decomposition kinetics. The results show that there are three stages of dehydration between 300 and 800 K during the thermal decomposition of α-Zn3(PO4)2·4H2O nanoparticle. The first stage is controlled by chemical reaction with an activation energy of 69.48 kJ·mol^-1 and a pre-exponential factor of 1.77×10^6 s^-1. The second is controlled by nucleation and growth with an activation energy of 78.74 kJ·mol^-1 and a pre-exponential factor of 5.86×10^9 s^-1. The third is controlled by nucleation and growth with an activation energy of 141.5 kJ·mol^-1 and a pre-exponential factor of 1.01×10^12 s^-1. The kinetic compensative effects not only exist in Arrhenius equation but also in Harcourt-Esson equation. Activation energy E is dependent on both the decomposition fraction α and temperature T.  相似文献   

12.
We describe a very efficient search for nucleotide alignments, which is analogous to the novel very efficient search for protein alignment. Just as it has been the case with the alignment of proteins, based on 20 × 20 adjacency matrices for amino acids, obtained from a superposition of labeled amino acids adjacency matrices for the proteins considered, one can construct labeled matrices of size 4 × 4, listing adjacencies of nucleotides in DNA sequence. The matrix elements correspond to 16 pairs of adjacent nucleotides. To obtain DNA alignments, one combines information in the corresponding matrices for a pair of DNA nucleotides. Matrices are obtained by insertion of the sequential labels for pairs of nucleotides in the corresponding cells of the 4 × 4 tables. When two such matrices are superimposed, one can identify all segments in two DNA sequences, which are shifted relative to one another by the same amount in either direction, without using trial‐and‐error displacements of the two sequences one relative to the other to find local nucleotide alignments. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A new energetic material, 4,5‐diacetoxyl‐2‐(dinitromethylene)‐imidazolidine (DADNI), was synthesized by the reaction of 4,5‐dihydroxyl‐2‐(dinitromethylene)‐imidazolidine (DDNI) and acetic anhydride, and characterized by single crystal X‐ray diffraction. Crystal data for DADNI are monoclinic, space group C2/c, a=15.9167(3) Å, b=8.6816(4) Å, c=8.5209(3) Å, β=103.294(9)°, V=1145.9(3) Å3, Z=4, µ=0.150 mm−1, F(000)=600, Dc=1.682 g·cm−3, R1=0.0565 and wR2=0.1649. Thermal decomposition behavior of DADNI was studied and an intensely exothermic process was observed. The kinetic equation of the decomposition reaction is: dα/dT=(1016.64/β)×4α3/4exp(−1.582×105/RT). The critical temperature of thermal explosion is 163.76°C. The specific heat capacity of DADNI was studied with micro‐DSC method and theoretical calculation method. The molar heat capacity is 343.30 J·mol−1·K−1 at 298.15 K. The adiabatic time‐to‐explosion of DADNI was calculated to be 87.7 s.  相似文献   

14.
2‐[(2E)‐3‐(4‐tert‐Butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) has been considered as an excellent matrix for matrix‐assisted laser desorption/ionization (MALDI) of many types of synthetic compounds. However, it might provide troublesome results for compounds containing aliphatic primary or secondary amino groups. For these compounds, strong extra ion peaks with a mass difference of 184.1 Da were usually observed, which might falsely indicate the presence of some unknown impurities that were not detected by other matrices. On the basis of the possible mechanisms proposed, these extra ions are the products of nucleophilic reactions between analyte amino groups and DCTB molecules or radical cations. In these reactions, an amino group replaces the dicyanomethylene group of DCTB forming a matrix adduct via a ? C?N‐bond. An aliphatic primary amine could react easily with DCTB and the reaction could start once they are mixed in a MALDI solution. For an aliphatic secondary amine, on the other hand, the reaction most likely occurs in the gas phase. Protonation of amino groups by adding acid seems to be a useful way to stop DCTB adduction for compounds with one single amino group, but not for compounds with multiple amino groups. Unlike aliphatic primary or secondary amines, aliphatic tertiary amines and aromatic amines do not yield DCTB adducts. This is because tertiary amines do not have the required transferrable H‐(N) atom to form an extra ? C?N‐bond, while aromatic amines are not sufficiently nucleophilic to attack DCTB. In view of the possible matrix adduction, care should be taken in MALDI time‐of‐flight mass spectrometry (TOF MS) when DCTB is used as the matrix for compounds containing amino group(s). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
张建国  张同来  刘艳红 《中国化学》2005,23(10):1403-1406
[Cu(TO)2(H2O)4](PA)2 was prepared by the reaction of aqueous 1,2,4-triazol-5-one (TO) solution with the solution of copper picrate Cu(PA)2 and characterized by elemental analysis, FT IR and X-ray powder diffraction analysis. The title complex has been studied by means of TG-DTG and DSC under conditions of linear temperature increase. The thermal decomposition residues were examined by FT IR analysis. Thermal decomposition mechanism of the title complex was proposed. In the temperature range of 30-680 ℃, the thermal decomposition process was composed of four major stages. The first stage was an endothermic process with the loss of four coordination water molecules. Since the dehydration product was unstable, when it was heated, it would be decomposed much more easily. The second stage was composed of an acute endothermic process and a continued strong exothermic process and the main decomposed residues were CuCO3, Cu(NCO)2 and polymers during this stage. The third stage was a sharp exothermic process, which resulted from the decomposition of the polymer. After the forth stage, the final decomposed residues were certainly copper oxide. The Arrhenius parameters have been also studied on the dehydration process and the first-step exothermic decomposition of [Cu(TO)2(H2O)4](PA)2 using Kissinger's method and Ozawa-Doyle's method. The results using both methods were consistent with each other. The Arrhenius equation can be expressed as in k=24.0-179.8 × 10^3/RT for the dehydration process and in k= 16.7-206.0 × 10^3/RT for the first-step exothermic decomposition, on the basis of the average of Ea and In A through the two methods.  相似文献   

16.
Sulfenic acid (HSOH, 1 ) has been synthesized in the gas‐phase by low‐pressure high‐temperature (1150 °C) pyrolysis of di‐tert‐butyl sulfoxide (tBu2SO, 2 ) and characterized by means of matrix isolation and gas‐phase IR spectroscopy. High‐level coupled‐cluster (CC) calculations (CCSD(T)/cc‐pVTZ and CCSD(T)/cc‐pVQZ) support the first identification of the gas‐phase IR spectrum of 1 and enable its spectral characterization. Five of the six vibrational fundamentals of matrix‐isolated 1 have been assigned, and its rotational‐resolved gas‐phase IR spectrum provides additional information on the O–H and S–H stretching fundamentals. Investigations of the pyrolysis reaction by mass spectrometry, matrix isolation, and gas‐phase FT‐IR spectroscopy reveal that, up to 500 °C, 2 decomposes selectively into tert‐butylsulfenic acid, (tBuSOH, 3 ), and 2‐methylpropene. The formation of the isomeric sulfoxide (tBu(H)SO, 3 a ) has been excluded. Transient 3 has been characterized by a comprehensive matrix and gas‐phase vibrational IR study guided by the predicted vibrational spectrum calculated at the density functional theory (DFT) level (B3LYP/6‐311+G(2d,p)). At higher temperatures, the intramolecular decomposition of 3 , monitored by matrix IR spectroscopy, yields short‐lived 1 along with 2‐methylpropene, but also H2O, and most probably sulfur atoms. In addition, HSSOH ( 6 ), H2, and S2O are found among the final pyrolysis products observed at 1150 °C in the gas phase owing to competing intra‐ and intermolecular decomposition routes of 3 . The decomposition routes of the starting compound 2 and of the primary intermediate 3 are discussed on the basis of experimental results and a computational study performed at the B3LYP/6‐311G* and second‐order Møller–Plesset (MP2/6‐311G* and RI‐MP2/QZVPP) levels of theory.  相似文献   

17.
Omeprazole is a substituted benzimidazole which suppresses gastric‐acid secretion by means of H+, K+‐ATPase inhibition. It is an optically active drug with the sulfur of the sulfoxide being the chiral center. This pro‐drug can be easily converted into its respective sulfenamide at low pH. In this work, omeprazole has been studied in relation to racemization barrier and decomposition reaction. Quantum chemistry coupled to PCA chemometric method were used to find all minimum energy structures. Conformational analysis and calculation of racemization barriers were carried out by PM3 semiempirical method (Gaussian 98). The average racemization energy barrier for all minimum energy structures (43.56 kcal mol?1) can be related to the velocity constant in Eyring's equation. The enormous half‐life time at 100°C (9.04 × 104 years) indicates that the process cannot be observed in human time scale. On the other hand, the difference of free energy change (Δ(ΔG) = ?266.78 kcal mol?1) for the decomposition reaction shows that the process is favorable to the sulfenamide formation. The highly negative Δ(ΔG) obtained for the decomposition reaction shows that this process is extremely exothermic. This result explains why omeprazole decomposes and does not racemize. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

18.
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state.  相似文献   

19.
Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix‐assisted laser desorption/ionization (IR‐MALDI). Especially in the 6–7 µm‐band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O–H, CO, and CH3. Additionally, atmospheric pressure (AP) IR‐MALDI, which is applicable to liquid‐state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP‐IR‐MALDI mass spectrometry of a peptide, angiotensin II, using a mid‐IR tunable laser with a tunable wavelength range of 5.50–10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H]+ of the peptide are measured using a conventional solid matrix, α‐cyano‐4‐hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3‐aminoquinoline. Other than the O–H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP‐IR‐MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H]+ is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O–H bending vibration mode. Moreover, long‐lasting and stable ion signals are obtained from the aqueous solution. AP‐IR‐MALDI using a 6–7 µm‐band IR tunable laser and solvents as the matrix may provide a novel on‐line interface between liquid chromatography and mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Therapeutic drug monitoring (TDM) of anti‐epileptic drugs (AED) is a routine application. Carbamazepine (CRB) is monitored as the parent drug while oxcarbazepine (OXC) and eslicarbazepine acetate (ESL) are monitored as their active metabolite (eslicarbazepine; MHD). We have developed a UPLC‐MS/MS method for determining CRB, OXC, ESL and MHD in plasma or serum with a simplified extraction protocol. The developed method detects sildenafil (SLD), which clinically interferes with AED and is likely to be co‐administered in epileptic patients suffering from sexual insufficiency (60%). MHD was prepared in‐house. AED were simultaneously determined in presence of SLD using gatifloxacin as an internal standard (IS). Separation was achieved using acetonitrile, methanol and 100 mm ammonium acetate in water (32:3:65, v /v/v) on an Intersil®RP‐HPLC column (250 × 4.6 mm, 5 μm). A one‐step extraction was performed by simultaneous protein and phospholipids precipitation. Detection was done by tandem mass spectrometry. No relative matrix effect was observed. The method was linear (0.5–40 μg/mL for CRB, ESL and MHD and 0.05–4 μg/mL for OXC), accurate and selective. Recoveries were 64.41 ± 5.07, 45.62 ± 1.73, 61.41 ± 4.77 and 60.33 ± 1.36 for CRB, OXC, ESL and MHD, respectively. The method was successfully applied for TDM of AED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号