首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The relative configurations of four stereogenic centers of the C33‐C42 fragment of niphimycin A were assigned as 2S*, 3R*, 4S* and 6S*, based upon 1H NMR analysis with double‐quantum filtered COSY and nuclear Overhauser spectroscopy experiments. These data were then correlated with absolute configurations at C36 and C38 of niphimycin A, which were declared previously as 36S and 38S [3]. This allowed for the assignment of the absolute configurations at C34 and C35 of niphimycin A as 34S and 35R. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A parallel localized spectroscopy (PALSY) method is presented to speed up the acquisition of multidimensional NMR (nD) spectra. The sample is virtually divided into a discrete number of nonoverlapping slices that relax independently during consecutive scans of the experiment, affording a substantial reduction in the interscan relaxation delay and the total experiment time. PALSY was tested for the acquisition of three experiments 2D COSY, 2D DQF‐COSY and 2D TQF‐COSY in parallel, affording a time‐saving factor of 3–4. Some unique advantages are that the achievable resolution in any dimension is not compromised in any way: it uses conventional NMR data processing, it is not prone to generate spectral artifacts, and once calibrated, it can be used routinely with these and other combinations of NMR spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Multiple two‐dimensional nuclear magnetic resonance (2D‐NMR) techniques have been used to study the structures of Krytox® perfluoro(polyalkyl ether) and its mechanism of polymerization. Model compound K4, containing four Krytox® fluoropolymer repeat units, was analyzed to interpret the multiplet patterns in the NMR spectra from the polymer model. 19F {13C}‐Heteronuclear single‐quantum correlation experiments, performed with delays optimized for 1JCF and 2JCF, provided spectra that permitted identification of resonances from individual monomer units. Selective, 19F‐19F COSY 2D‐NMR experiments were performed with different excitation regions; these experiments were combined with selective inversion pulses to remove 19F‐19F J couplings in the f1 dimension. The resulting COSY spectra were greatly simplified compared with standard 19F‐19F COSY spectra, which are too complicated to interpret. They give information regarding the attachments of monomer units and also provide insights into the nature of the stereoisomers that might be present in the polymer. Both infrared and NMR spectra show peaks identifying chain end structures. With the help of these studies, resonances can be assigned, and the average number of repeat units in the polymer chain can be calculated based on the assignments obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The feasibility of solid‐state magic angle spinning (MAS) 31P nuclear magnetic resonance (NMR) spectroscopy and 23Na NMR spectroscopy to investigate both phosphates and Na+ ions distribution in semi‐hard cheeses in a non‐destructive way was studied. Two semi‐hard cheeses of known composition were made with two different salt contents. 31P Single‐pulse excitation and cross‐polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively ‘mobile’ fraction of colloidal phosphates was evidenced. The detection by 23Na single‐quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of ‘bound’ sodium ions was evidenced by 23Na double‐quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na+ ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
《Chemie in Unserer Zeit》2017,51(4):264-271
The present state of the routine 2D COSY‐ and HSQC‐NMR spectroscopy is reported. After a short introduction into the basic theory of 2D NMR the pulse sequences of COSY and HSQC are explained. Using an example from natural product chemistry the procedures during the analysis of these 2D NMR spectra are demonstrated.  相似文献   

6.
A spin state‐selective Heteronuclear Single‐Quantum Multiple‐Bond Connectivities (HSQMBC‐COSY) experiment is proposed to measure the sign and the magnitude of long‐range proton‐carbon coupling constants (nJ(CH); n > 1) either for protonated or for non‐protonated carbons in small molecules. The simple substitution of the selective 180° 1H pulse in the original selHSQMBC pulse scheme by a hard one allows the simultaneous evolution of both proton‐proton and proton‐carbon coupling constants during the refocusing period and enables a final COSY transfer between coupled protons. The successful implementation of the IPAP principle leads to separate mixed‐phase α/β cross‐peaks from which nJ(CH) values can be easily measured by analyzing their relative frequency displacements in the detected dimension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Conventional NMR spectroscopy techniques require long acquisition times due to the recovery time between the repeated excitations necessary for each increment of the evolution times in the indirectly detected dimensions. Here we outline a pulse sequence element for gradient-assisted ultrafast multidimensional NMR spectroscopy using frequency-modulated 'chirp' pulses to generate phase-modulated magnetization in an indirectly detected spectral dimension. The potential of this sequence element is demonstrated by acquiring a correlation spectroscopy (COSY) spectrum in 96 ms. This new pulse sequence element is an extension of ultrafast spectroscopy techniques based on the generation of amplitude modulation of the NMR signal in the indirectly detected spectral dimensions. The use of phase modulation instead of amplitude modulation helps broaden the applicability and may provide an increase of sensitivity in some experiments due to the ability to distinguish between positive and negative frequency offsets relative to the carrier frequency of the sequence element.  相似文献   

8.
An effective pulse sequence for measuring H–H coupling constants, named BASHD‐J‐resolved‐COSY, has been developed. In the spin systems such as –CHA–CHB(CH3)–CHC–, a methine proton HB splits into a multiplet owing to several vicinal couplings, resulting in attenuation of its cross‐peak intensity. Therefore, the measurements of 3JH–H with respect to HB are generally difficult in the E‐COSY‐type experiments. With the aim of accurate measurements of 3JH‐H in such a spin system, we have developed a new pulse sequence, which selectively decouples the secondary methyl group. The proposed pulse sequence provides the simplified cross‐peak patterns, which are suitable for reliable measurements of 3JH‐H in a complicated natural product. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Two-dimensional NMR spectra of gramicidin S have been measured. With the combination of COSY (through bond interaction) and NOESY (through space interaction) spectra, it is possible to identify amino acid residues sequentially. It is found that the phase-sensitive 2D technique is superior to the absolute value mode. A double quantum filtering technique could be combined with phase-sensitive COSY experiments to obtain the optimum results.  相似文献   

10.
23Na NMR spectroscopy has been used to study the effects of Na+ ion concentrations on the structure of 1% (w/w) iota‐carrageenan systems, a natural gelling polysaccharide used as a thickener in the food industry. Rheological and 23Na T1 relaxation time measurements revealed that gel formation correlates with decreases in ion mobility over the range of 0–3% (w/w) sodium content. 23Na single‐quantum (SQ) and double‐quantum‐filtered (DQF) NMR experiments performed on these systems provided evidence for a ‘bound’ sodium ion fraction in a specifically ordered environment. These results have allowed us to propose a model for the carrageenan gelation mechanism in the presence of Na+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.  相似文献   

12.
A simple and robust solvent suppression technique that enables acquisition of high‐quality 1D 1H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of 13C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well‐established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band‐selective TOCSY, 2D J‐resolved spectroscopy, 2D 1H, 13C heteronuclear single‐quantum correlation spectroscopy (HSQC), 2D 1H, 13C HSQC‐TOCSY, and 2D 1H, 13C heteronuclear multiple‐bond correlation spectroscopy (HMBC). A 1D chemical‐shift‐selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level.  相似文献   

13.
1H and 13C NMR chemical shifts of cis and trans isonucleoside analogues of purine in which the furanose moiety is substituted by a tetrahydropyran ring were completely assigned using one‐ and two‐dimensional NMR experiments that include NOE, DEPT, COSY and HSQC. The significant 1H and 13C NMR signals differentiating between the cis and trans stereoisomers were compared. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Nested NMR experiments combining up to five conventional NMR pulse sequences into one supersequence are introduced. The core 2D NMR techniques routinely employed in small molecule NMR spectroscopy, such as HSQC, HMQC, HMBC, COSY, NOESY, TOCSY, and similar, can be recorded in a single measurement. In this way the data collection time may be dramatically reduced and sample throughput increased for basic NMR applications, such as structure elucidation and verification in synthetic, medicinal, and natural product chemistry.  相似文献   

15.
Two-dimensional double quantum filtered phase sensitive (DQPH)COSY NMR spectroscopy has been used to aid characterization of new η-pentamethylcyclopentadienyl- and η-indenyl-platinum complexes. The syntheses of the first mononuclear η-pentamethylcyclopentadienylplatinum complexes are reported.  相似文献   

16.
A selection of mono‐ and pseudo ortho di‐substituted octafluoro[2.2]paracyclophane derivatives were analyzed using 19F‐1H HOESY, 1H COSY and 19F COSY techniques. This resulted in the unambiguous assignment of the 19F and 1H NMR resonances, and also revealed interesting solvent effects and noteworthy coupling patterns for various JHH, JHF, and JFF interactions, including observable through bond 7JFF and 8JFF couplings. For the four mono‐substituted derivatives, the assignments were achieved through the combination of 19F‐1H HOESY, 1H COSY and 19F COSY techniques. The C2 symmetry of the six pseudo ortho di‐substituted derivatives that were examined produced simplified spectra, and careful inspection of the characteristic 1H coupling patterns led to the assignment of 1H signals. Therefore only 19F‐1H HOESY experiments were required to complete the assignments for those molecules. Refinements and alternative strategies for previous protocols are presented for the molecules that were less responsive to nuclear Overhauser effect (nOe) experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The solid‐phase synthesis (SPS) of a structurally complex glycopeptide, using Sieber amide resin, was monitored by high resolution magic angle spinning NMR, demonstrating the further application of this technique. A synthetic peptidoglycan derivative, a precursor of a biologically active PGN, known to be involved in the cellular recognition, was prepared by SPS. The synthesis involved the preparation of an N‐alloc glucosamine moiety and the synthesis of a simple amino acid sequence L ‐Ala‐D ‐Glu‐L ‐Lys‐D ‐Ala‐D ‐Ala. Last step consisted the coupling, on solid‐phase, of the protected muramyl unit to the peptide chain. Proton spectra with good suppression of the polystyrene signals in swollen resin samples were obtained in DMF‐d7 as a solvent and by using a nonselective 1D TOCSY/DIPSI‐2 scheme, thus allowing to follow the SPS without losses of compound and cleavage from the resin. The assignment of the proton spectra of the resin‐bound amino acid sequence and of the bound glycopeptide was achieved through the combination of MAS COSY, TOCSY and NOESY. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Structure elucidation of compounds in the benzisoxazole series ( 1 – 6 ) and naphtho[1,2‐d][1,3]‐ ( 7 – 10 ) and phenanthro[9,10‐d][1,3]oxazole ( 11 – 14 ) series was accomplished using extensive 2D NMR spectroscopic studies including 1H–1H COSY, long‐ range 1H–1H COSY, 1H–13C COSY, gHMQC, gHMBC and gHMQC‐TOCSY experiments. The distinction between oxazole and isoxazole rings was made on the basis of the magnitude of heteronuclear one‐bond 1JC2, H2 (or 1JC3, H3) coupling constants. Complete analysis of the 1H NMR spectra of 11 – 14 was achieved by iterative calculations. Gradient selected gHMQC‐TOCSY spectra of phenanthro[9,10‐d][1,3]oxazoles 11 – 14 were obtained at different mixing times (12, 24, 36, 48 and 80 ms) to identify the spin system where the protons of phenanthrene ring at H‐5, H‐6 and at H‐9 and H‐7 and H‐8 were highly overlapping. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The 1H and 13C NMR spectral study of several biologically active derivatives of 8‐quinolinol have been made through extensive NMR studies including homodecoupling and 2D‐NMR experiments such as COSY‐45°, NOESY, and HeteroCOSY. Electron donating resonance and electron withdrawing inductive effect of several groups showed marked changes in chemical shifts of nuclei at the seventh positions of O‐substituted quinolinols (2–15). Although in N‐alkyl, 8‐alkoxyquinolinium halides (16–21), ring A rightly showed low frequency chemical shift values. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Ultrafast (UF) 2D NMR is a very promising methodology enabling the acquisition of 2D spectra in a single scan. In the last few years, the analytical performance of UF 2D NMR has been highly increased, consequently maximizing its range of applications. However, its implementation and use by non‐specialists are far from being straightforward, because of the specific acquisition and processing procedures and parameters characterizing UF NMR. To make this methodology implementable and applicable by non‐specialists, we developed a simple routine capable of translating conventional parameters (spectral widths and transmitter frequencies) into specific UF parameters (gradient and chirp pulse parameters). This macro was subsequently implemented in a Web page, which is available for external users. Although the algorithm was designed for two widely used 2D experiments, COSY and HSQC, it can easily be extended to any other pulse sequence. The robustness of this routine was verified successfully on a variety of small molecules. We believe that this tool will eliminate much of the technical difficulties related to UF 2D NMR and will make the technique accessible to a wider audience of organic and analytical chemists. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号