首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemes (iron porphyrins) are involved in a range of functions in biology, including electron transfer, small-molecule binding and transport, and O2 activation. The delocalization of the Fe d-electrons into the porphyrin ring and its effect on the redox chemistry and reactivity of these systems has been difficult to study by optical spectroscopies due to the dominant porphyrin pi-->pi(*) transitions, which obscure the metal center. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.e., differences in mixing of the d-orbitals with ligand orbitals) using a valence bond configuration interaction (VBCI) model. Applied to low-spin heme systems, this methodology allows experimental determination of the delocalization of the Fe d-electrons into the porphyrin (P) ring in terms of both P-->Fe sigma and pi-donation and Fe-->P pi back-bonding. We find that pi-donation to Fe(III) is much larger than pi back-bonding from Fe(II), indicating that a hole superexchange pathway dominates electron transfer. The implications of the results are also discussed in terms of the differences between heme and non-heme oxygen activation chemistry.  相似文献   

2.
The qualitative structures of the upper one‐electron energy levels of imidazole‐coordinated first‐row transition metal porphyrin [MePIm2] complexes established in the present study have shown that the second oxidation number of the first‐row transition metals in the neutral complexes do not change in their cations and double cations. It was found that occupied orbitals of the density functional theory method obtained with B3LYP functional are not correctly ordered. Therefore, they cannot be used in investigations of the orbital structure of the upper molecular orbitals. A qualitative analysis of density functional theory method wave functions in terms of Mulliken and natural charges of atoms, together with an analysis of electrostatic potentials of the neutral [MePIm2] complex, its single and double cations, demonstrates that the highest occupied orbitals of these complexes are mainly formed by atomic orbitals of the porphyrin ring atoms. Therefore, transition metal atoms are not active in chemical reactions with these complexes unless the 3d electrons of transition metal atoms are excited, for example by light. A mechanism of an electron transfer reaction that occurs between a heme cytochrome and Fe‐oxide mineral surface is discussed in the light of the obtained results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
A comparative analysis of densities of states has been carried out for the valence regions of the hemes and clusters of cytochromes f and c using the ZINDO1 semiempirical quantum-chemical method. The molecular orbitals of these structures are formed from the p atomic orbitals of nitrogen and carbon of the porphyrin ring, making equal contributions. For systems with negative charges, more than half of all added electrons are distributed over the porphyrin parts of the molecules. The molecular orbital energies of the valence regions of the corresponding clusters and hemes are nearly the same. In iron porphyrin, as well as in heme f and cytochrome cluster f, the lowest unoccupied molecular orbital is doubly degenerate. In heme c and cytochrome cluster c, the degeneracy is lifted because of the asymmetry of the nearest aminoacid environment and substituents in the porphyrin ring.  相似文献   

4.
We report the synthesis and the characterizations of a novel dyad composed of a zinc porphyrin (ZnP) linked to a gold porphyrin (AuP) through an ethynyl spacer. The UV/Vis absorption spectrum and the electrochemical properties clearly reveal that this dyad exhibits a strong electronic coupling in the ground state as evidenced by shifted redox potentials and the appearance of an intense charge‐transfer band localized at λ=739 nm in dichloromethane. A spectroelectrochemical study of the dyad along with the parent homometallic system (i.e., ZnP–ZnP and AuP–AuP) was undertaken to determine the spectra of the reduced and oxidized porphyrin units. Femtosecond transient absorption spectroscopic analysis showed that the photoexcitation of the heterometallic dyad leads to an ultrafast formation of a charge‐separated state (+ZnP–AuP.) that displays a particularly long lifetime (τ=4 ns in toluene) for such a short separation distance. The molecular orbitals of the dyad were determined by DFT quantum‐chemical calculations. This theoretical study confirms that the observed intense band at λ=739 nm corresponds to an interporphyrin charge‐transfer transition from the HOMO orbital localized on the zinc porphyrin to LUMO orbitals localized on the gold porphyrin. Finally, a Hyper–Rayleigh scattering study shows that the dyad possesses a large first molecular hyperpolarizability coefficient (β=2100×10?30 esu at λ=1064 nm), thus highlighting the valuable nonlinear optical properties of this new type of push–pull porphyrin system.  相似文献   

5.
Computational modeling offers a new insight about the electron transfer pathway in heme peroxidases. Available crystal structures have revealed an intriguing arrangement of the heme propionate side chains in heme-heme and heme-substrate complexes. By means of mixed quantum mechanical/molecular mechanics calculations, we study the involvement of these propionate groups into the substrate oxidation in ascorbate peroxidase and into the heme to heme electron transfer in bacterial cytochrome c peroxidase. By selectively turning on/off different quantum regions, we obtain the electron transfer pathway which directly involves the porphyrin ring and the heme propionates. Furthermore, in ascorbate peroxidase the presence of the substrate appears to be crucial for the activation of the electron transfer channel. The results might represent a general motif for electron transfer from/to the heme group and change our view for the propionate side chains as simple electrostatic binding anchors. We name the new mechanism "the propionate e-pathway".  相似文献   

6.
Anion–π interactions generally exist between an anion and an electron‐deficient π‐ring because of the electron‐accepting character of the ring. In this paper, we report orbital effect‐induced anomalous binding between electron‐rich π systems and F? through anion–π interactions calculated at the MP2/6‐31+G(d,p) and ωB97X‐D/6‐31+G(d,p) levels of theory. We find that anion–π interactions between F? and electron‐rich π rings increase markedly with increasing number of π electrons and size of the π rings. This is contrary to intuition because anion–π interactions would be expected to gradually decrease because of gradually increasing Coulombic repulsion between the negative charge of the anions and gradually increasing number of π electrons of the aromatic surfaces. Energy decomposition analysis showed that the key to this anomalous effect is the more effective delocalization of negative charge to the unoccupied π* orbitals of larger π rings, which is termed an “orbital effect”.  相似文献   

7.
Spectroscopic, redox, computational, and electron transfer reactions of the covalently linked zinc porphyrin–triphenylamine–fulleropyrrolidine system are investigated in solvents of varying polarity. An appreciable interaction between triphenylamine and the porphyrin π system is revealed by steady‐state absorption and emission, redox, and computational studies. Free‐energy calculations suggest that the light‐induced processes via the singlet‐excited porphyrin are exothermic in benzonitrile, dichlorobenzene, toluene, and benzene. The occurrence of fast and efficient charge‐separation processes (≈1012 s?1) via the singlet‐excited porphyrin is confirmed by femtosecond transient absorption measurements in solvents with dielectric constants ranging from 25.2 (benzonitrile) to 2.2 (benzene). The rates of the charge separation processes are much less solvent‐dependent, which suggests that the charge‐separation processes occur at the top region of the Marcus parabola. The lifetimes of the singlet radical‐ion pair (70–3000 ps at room temperature) decrease substantially in more polar solvents, which suggests that the charge‐recombination process is occurring in the Marcus inverted region. Interestingly, by utilizing the nanosecond transient absorption spectral technique we can obtain clear evidence about the existence of triplet radical‐ion pairs with relatively long lifetimes of 0.71 μs (in benzonitrile) and 2.2 μs (in o‐dichlorobenzene), but not in toluene and benzene due to energetic considerations. From the point of view of mechanistic information, the synthesized zinc porphyrin–triphenylamine–fulleropyrrolidine system has the advantage that both the lifetimes of the singlet and triplet radical‐ion pair can be determined.  相似文献   

8.
The time evolution of electronically excited heme (iron II protoporphyrin IX, [Fe(II) PP]) and its associated salt hemin (iron III protoporphyrin IX chloride, [Fe(III) PP-Cl]), has been investigated for the first time in the gas phase by femtosecond pump-probe spectroscopy. The porphyrins were excited at 400 nm in the S(2) state (Soret band) and their relaxation dynamics was probed by multiphoton ionization at 800 nm. This time evolution was compared with that of the excited state of zinc protoporphyrin IX [Zn PP] whose S(2) excited state likely decays to the long lived S(1) state through a conical intersection, in less than 100 fs. Instead, for [Fe(II) PP] and [Fe(III) PP-Cl], the key relaxation step from S(2) is interpreted as an ultrafast charge transfer from the porphyrin excited orbital π* to a vacant d orbital on the iron atom (ligand to metal charge transfer, LMCT). This intermediate LMCT state then relaxes to the ground state within 250 fs. Through this work a new, serendipitous, preparation step was found for Fe(II) porphyrins, in the gas phase.  相似文献   

9.
The electron structure of cluster model for active centers of cytochrome-c-oxidase has been calculated by DFT (PBE) method in 6-31G basis. The cluster model was constructed on the basis of experimental PDB-structure and included 1105 hemoprotein atoms. The valence band ceiling of cytochromeoxidase active centers is shown to be formed by the atoms of carbon and nitrogen from porphyrin ring of cytochrome heme a3 and atoms of carbon and nitrogen from imidazol moieties of histidine connected with Cu atom in cytochrome a3. D-orbitals of Cu and Fe atoms from heme a3 and d-orbital of Fe atom from heme a contribute mainly to the orbital group. A conclusion is made that the catalytic activity of the structure is determined by these two types of orbitals. Cu d-orbitals of cytochrome a are substantially low in energy. It is suggested that Cu atoms of cytochrome a shift the chemical potential of d-orbitals belonging to the active center that results in their easier electron accepting and releasing. This can be a decisive factor in the electron transport process.  相似文献   

10.
The dissociation of holomyoglobin ions ranging in charge state from +10 to +2 has been studied using collisional activation in a quadrupole ion trap. Collisional activation times and amplitudes were varied to investigate the effects of these variables on dissociation of the heme group from the holoprotein. The onset of neutral heme loss occurs at a lower activation amplitude than loss of charged heme. For solutions of ferri-myoglobin, charged heme loss was prominent for +10 to +4 holomyoglobin ions, while neutral heme loss product was found to be dominant for charge states +3 and +2. For any given charge state, activation of holomyoglobin ions from a solution containing primarily ferro-myoglobin yielded significantly more abundant neutral heme loss products than was observed for activation of ions from solutions containing primarily ferri-myoglobin. The relative concentrations of the two oxidation states were shown to be affected by redox chemistry within the nano-electrospray emitter used in this work. Results from a double activation experiment revealed that the precursor ions of a given charge state contained a mixture of two populations, with ferro-myoglobin giving rise to neutral heme loss upon dissociation and ferri-myoglobin yielding charged heme. No evidence for electron transfer upon collisional activation of ferri-myoglobin ions was observed. Furthermore, little or no evidence for electron transfer associated with ion/ion reactions with anions derived from perfluoro-1,3-dimethylcyclohexane was observed. Definitive results could not be drawn for the lowest precursor ion charge states (+3 and +2) due to low dissociation efficiencies.  相似文献   

11.
It is established that the reactive orbital energy theory (ROET) theoretically reproduces the rule-based electronic theory diagrams of organic chemistry by a comparative study on the charge transfer natures of typical organic carbon–carbon and carbon–heteroatom bond formation reactions: aldol, Mannich, α-aminooxylation, and isogyric reactions. The ROET, which is an expansion of the reaction electronic theories (e.g., the frontier orbital theory) in terms of orbital energies, elucidates the reactive orbitals driving reactions and the charge transferability indices of the reactions. Performing the ROET analyses of these reactions shows that the charge transfer directions given in the rule-based diagrams of the electronic theory are reproduced even for the functional groups of charge transfer destinations in all but only two processes for 38 reaction processes. The ROET analyses also make clear the detailed orbital-based pictures of these bond formation reactions: that is, the use of the out-of-plane antibonding π orbitals in acidic conditions (enol-mode) and in-plane antibonding π orbitals in basic conditions (enolate-mode), which explain the experimentally assumed mechanisms such as the π-bond formations in acidic conditions and σ-bond formations at α-carbons in basic conditions. Furthermore, the ROET analyses explicate that the methyl group initially accepts electrons and then donates them to the bond formations in the target reactions. It is, consequently, suggested that the ROET serves a theoretical foundation for the electronic theory of organic chemistry.  相似文献   

12.
A simple orbital model of the binding of NO to the heme iron in nitrosylhemoglobin is presented that fits the experimentally measured g factors and spin distribution. The NO π orbitals are split by approximately 4000 cm?1 X hc such that the lower singly occupied member lies 8000 cm?1 X hc above the filled Fe d orbitals. Binding of Fe to the N of NO is primarily of two comparable in-plane (xz) types, dσ—pσ with 23% dz2 character and dπ—pπ with 25% dxz character. There is relatively less of the out-of-plane dπ—pπ and it involves almost no dyz character.  相似文献   

13.
Ab initio SCF and SCF -CI calculations have been performed to investigate substituent effects on ground- and excited-state properties of 4-R-pyrimidines, and to compare these with substituent effects in 2- and 4-R-pyridines, with R including the π donating and σ withdrawing groups CH3, NH2, OH, F, and C2H3 and the σ and π electron-withdrawing groups CHO and CN. Substitution leads to significant changes in the internal angles of the pyrimidine ring, which are independent of the nature of the substituent. The geometry of the pyrimidine ring is more sensitive to substitution in the 4 position than the pyridine ring geometry is to substitution in either the 2 or the 4 position. The isodesmic reaction energies for substituent transfer from the 4 position of pyrimidine to the 2 or 4 position of pyridine indicate that all R groups except CN have a relative stabilizing effect in pyrimidine. The presence of a π donating group leads to an increase in the n→π* transition energy of 4-R-pyrimidines, while the π withdrawing group CN leads to a decrease in the transition energy relative to pyrimidine. Orbital energy differences and virtual excitation energies tend to correlate with n→π* transition energies of 4-R-pyrimidines with saturated R groups, but such correlations are masked by π conjugation, n orbital interaction, and configurational mixing when the unsaturated groups C2H3, CHO, and CN are present. The electronic effects of a π donating group are stronger when the group is bonded to pyrimidine than to pyridine, but those of a π withdrawing group are weaker when the group is bonded to pyrimidine.  相似文献   

14.
The reactivity of the metalloporphyrins was closely related to their ligand effect at axial position. The electronic properties of six model Co(II) porphyrins are investigated by spectral and electrochemical methods. Structural parameters of the Co(II) complexes are directly obtained from their crystal structures. We demonstrate that the unpaired 3d electron of low‐spin Co(II) ions in nonplanar Co(II) porphyrin complexes activated by core contraction of porphyrin macrocycles can be further activated by the axial ligation of imidazole. The activated electron can combine with a π orbital of the porphyrin ring to form a new d‐π orbital, which can induce the Q‐band of Co(II) porphyrins to visibly split. Addition of imidazole causes the Co(II)/Co(III) and Co(II)/Co(I) reactions to shift to more negative potential. Our results indicate that strong axial ligation and core contraction both play important roles in electron transfer in redox catalysis involving Co(II) complexes.  相似文献   

15.
A “frozen” electron donor–acceptor array that bears porphyrin and fullerene units covalently linked through the ortho position of a phenyl ring and the nitrogen of a pyrrolidine ring, respectively, is reported. Electrochemical and photophysical features suggest that the chosen linkage supports both through‐space and through‐bond interactions. In particular, it has been found that the porphyrin singlet excited state decays within a few picoseconds by means of a photoinduced electron transfer to give the rapid formation of a long‐lived charge‐separated state. Density functional theory (DFT) calculations show HOMO and LUMO to be localized on the electron‐donating porphyrin and the electron‐accepting fullerene moiety, respectively, at this level of theory. More specifically, semiempirical molecular orbital (MO) configuration interaction (CI) and unrestricted natural orbital (UNO)‐CI methods shed light on the nature of the charge‐transfer states and emphasize the importance of the close proximity of donor and acceptor for effective electron transfer.  相似文献   

16.
应用密度泛函理论(DFT)及含时密度泛函理论(TDDFT)方法研究了N-丁基-4,5-二[2-(苯胺基)乙胺基]-l,8萘酰亚胺红移型铜离子比率荧光探针的光物理性质. 通过探针分子与金属离子结合前后的几何构型优化, 结合自然键轨道分析, 揭示了探针分子对铜离子的识别作用. 通过激发态计算阐明了光诱导分子内电荷转移(ICT)机理. 研究结果表明, 由于Cu(II)离子络合导致萘胺脱氢, 带负电荷的胺基N原子与萘环形成C=N双键,延长了共轭体系; N的非键电子向Cu(II)离子的空d轨道转移一个电子, 抑制了Cu(II)离子的顺磁效应所导致的荧光淬灭, 受光激发后, 共轭N与萘环之间发生n→π*电子转移导致ICT效应和荧光红移.  相似文献   

17.
十二烷基磺酸钠对大豆过氧化物酶活性和构象的影响   总被引:2,自引:0,他引:2  
在不同的pH值体系中, 利用酶活测量、圆二色谱、荧光谱和电子吸收谱研究了十二烷基磺酸钠(SDS)对大豆过氧化物酶(SBP)活性与构象的影响情况. 在pH 2.6和4.2 的体系中, 少量的SDS分子可通过静电作用与SBP结合, 进而与SBP分子中的His169残基结合, 降低其与铁卟啉的配位能力, 使其Soret吸收带蓝移, 二级结构发生轻微的变动, 活性永久丧失. 在pH 5.2体系中, SDS和SBP分子都带负电, 由于静电排斥作用, SDS无法进入SBP的分子内部, 失去与SBP分子中His169残基结合的能力, 对SBP分子的二级结构没有影响, 仅对SBP分子的三级结构有所影响. 当SDS的浓度大于临界胶束浓度时, 由于胶束与SBP的静电排斥作用增强, 限制了铁卟啉中乙烯基的运动, 乙烯基与卟啉环的共轭程度增大, Soret 吸收带红移. 由于SBP活性可完全恢复, 此变化是可逆的.  相似文献   

18.
Double ring expansion from a 5,15‐diarylporphyrin to a 5,16‐diaryl‐10,11,21,22‐tetradehydro[20]porphyrin(2.1.2.1) occurred through a reaction sequence consisting of oxidation with PbO2 to 5,15‐dioxoporphodimethene, a Corey–Fuchs reaction with tetrabromomethane in the presence of triphenylphosphine, and Fritsch–Buttenberg–Wiechell rearrangement triggered by tert‐butyllithium. The obtained tetradehydro[20]porphyrin(2.1.2.1) and its mono‐ and dihydrogenated congeners exhibited 20 π antiaromatic character, whereas overhydrogenated congeners bearing a saturated bridge were nonaromatic owing to disrupted π conjugation.  相似文献   

19.
An ab initio LCAO SCF MO calculation was performed on planar Fe-porphine with a double zeta basis set consisting of 300 CGTO 's. SCF wave functions of several states of Fe-porphine and its cation were obtained. The net charge of Fe is in the range of 1.39 to 1.53. The highest occupied orbital is ascertained to be a pure porphine π-MO , 1a1u. The calculated ionization potentials of the two highest occupied orbitals, 1a1u and 5a2u are 5.98 and 6.43 eV, respectively. They are in good agreement with experiments. The role of the porphine macrocycle on the oxidation of Fe is discussed in terms of gross atomic populations and with contour maps of the density difference.  相似文献   

20.
A computational analysis of phenol and p-nitrophenol has been carried out with the objective of determining the extent to which the conjugation between the -OH group and the aromatic ring is affected by a 90° rotation of the former. The ab initio SCF-MO GAUSSIAN 82 procedure was used to compute optimized geometries, electronic densities and electrostatic potentials. The effect of rotation upon the structures and distributions of π electronic charge are rather small. However, the electrostatic potential reveals that as a consequence of rotation around the COH bond, there should be an overall preference for the ortho positions as the initial sites for electrophilic attack. The -NO2 group deactivates the aromatic ring toward electrophiles and increases the positive character of the hydroxyl hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号