首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
A comparison is made between geometry optimization in Cartesian coordinates, using an appropriate initial Hessian, and natural internal coordinates. Results on 33 different molecules covering a wide range of symmetries and structural types demonstrate that both coordinate systems are of comparable efficiency. There is a marked tendency for natural internals to converge to global minima whereas Cartesian optimizations converge to the local minimum closest to the starting geometry. Because they can now be generated automatically from input Cartesians, natural internals are to be preferred over Z-matrix coordinates. General optimization strategies using internal coordinates and/or Cartesians are discussed for both unconstrained and constrained optimization. © John Wiley & Sons, Inc.  相似文献   

2.
A comparison is made between geometry optimization in Cartesian coordinates, in Z-matrix coordinates, and in natural internal coordinates for the location of transition states. In contrast to the situation with minima, where all three coordinate systems are of comparable efficiency if a reliable estimate of the Hessian matrix is available at the starting geometry, results for 25 different transition states covering a wide range of structural types demonstrate that in practice Z-matrix coordinates are generally superior. For Cartesian coordinates, the commonly used Hessian update schemes are unable to guarantee preservation of the necessary transition state eigenvalue structure, while current algorithms for generating natural internal coordinates may have difficulty handling the distorted geometries associated with transition states. The widely used Eigenvector Following (EF) algorithm is shown to be extremely efficient for optimizing transition states. © 1996 by John Wiley & Sons, Inc.  相似文献   

3.
Optimization methods that use gradients require initial estimates of the Hessian or second derivative matrix; the more accurate the estimate, the more rapid the convergence. For geometry optimization, an approximate Hessian or force constant matrix is constructed from a simple valence force field that takes into account the inherent connectivity and flexibility of the molecule. Empirical rules are used to estimate the diagonal force constants for a set of redundant internal coordinates consisting of all stretches, bends, torsions and out-of-plane deformations involving bonded atoms. The force constants are transformed from the redundant internal coordinates to Cartesian coordinates, and then from Cartesian coordinates to the non-redundant internal coordinates used in the specification of the geometry and optimization. This method is especially suitable for cyclic molecules. Problems associated with the choice of internal coordinates for geometry optimization are also discussed.Fellow of the Alfred P. Sloan Foundation, 1981–83  相似文献   

4.
Efforts to develop a database of quadratic force fields for organic molecules are described. The database is based on systematic ab initio calculations, scaled to reproduce the experimentally observed frequencies. The choice of the theoretical method, the basis sets, geometries, internal coordinates and the scaling procedure are discussed. A key point in the procedure is the automatic generation of the internal valence coordinates. This is also very advantageous for geometry optimization. The database should permit the prediction of vibrational frequencies for most organic molecules to 10–20 cm−1, together with semiquantitative intensities. The accuracy is sufficient to identify unknown compounds from a list of reasonable candidates.  相似文献   

5.
The geometry optimization using natural internal coordinates was applied for transition metal complexes. The original definitions were extended here for the skeletal degrees of freedom which are related to the translational and rotational displacements of the ηn-bonded ligands. We suggest definitions for skeletal coordinates of ηn-bonded small unsaturated rings and chains. The performance of geometry optimizations using the suggested coordinates were tested on various conformers of 14 complexes. Consideration was given to alternative representations of the skeletal internal coordinates, and the performance of optimization is compared. Using the skeletal internal coordinates presented here, most transition metal complexes were optimized between 10 and 20 geometry optimization cycles in spite of the usually poor starting geometry and crude approximation for the Hessian. We also optimized the geometry of some complexes in Cartesian coordinates using the Hessian from a parametrized redundant force field. We found that it took between two and three times as many iterations to reach convergence in Cartesian coordinates than using natural internal coordinates. © 1997 by John Wiley & Sons, Inc.  相似文献   

6.
In this paper we present and analyze the most essential aspects of reduced masses along generalized internal coordinates. The definition of reduced masses in the internal coordinate formalism is established through the Wilson G-matrix concept and includes sophisticated relations between internal and Cartesian coordinates. Moreover, reduced masses in internal coordinates are, in general, no longer constant but coordinate-dependent. Based on the approach presented earlier [Stare, J.; Balint-Kurti, G. G. J. Phys. Chem. A 2003, 107, 7204-7214] and on our experience with reduced masses discussed in this paper, we have developed a robust program for the calculation of Wilson G-matrix elements and their functional coordinate dependence. The approach is based on the first principles and can be used in virtually any (internal) coordinate set. Since the program allows for projection of any kind of nuclear motion on the selected internal coordinates, the method is particularly suitable for ab initio or DFT potential energy functions calculated by partial geometry optimization. Moreover, reduced masses obtained by this program can be used as a decision tool for selecting the most appropriate internal coordinates for the considered vibrational problem and for the inclusion or omission of the kinetic coupling terms in the vibrational Hamiltonian.  相似文献   

7.

The aim of this work was to present a comprehensive vibrational spectroscopic study of 25,26,27,28-tetrahydroxycalix[4]arene. For this purpose, quantum chemical calculations were carried out at the ab initio HF/4-31G* level, as a consequence of the great size of the molecule. In the frame of these calculations, the symmetry of the molecule was investigated. Trying C 4v , C 2v , and C s symmetries as input, the geometry optimization, however, pointed to the C 2 configuration. In the latter case, all the calculated vibrational frequencies were greater than zero, and therefore the equilibrium geometry could be identified. Medium and far infrared as well as Raman spectra of the compound were measured. On the basis of the calculated force constants and geometric parameters, normal coordinate analysis was applied for the interpretation of the experimental vibrational spectra. Problems arose with the choice of the internal coordinates of the molecule, which are important from the point of view of the internal macrocycle ("lower rim") of the molecule. On the basis of the theory of redundant coordinates, a program was written for choosing the coordinates of this 16-membered cycle. Full interpretation of the vibrational fundamentals of the compound is presented. Several force constant matrix elements have surprisingly high values. As a result of the normal coordinate analysis, the relative rigidity of the lower rim was concluded. Ab initio calculations and assignment of the vibrational spectra of 25,26,27,28-tetrahydroxycalix[4]arene based on the calculations are presented.  相似文献   

8.
In geometry optimizations and molecular dynamics calculations, it is often necessary to transform a geometry step that has been determined in internal coordinates to Cartesian coordinates. A new method for performing such transformations, the high‐order path‐expansion (HOPE) method, is here presented. The new method treats the nonlinear relation between internal and Cartesian coordinates by means of automatic differentiation. The method is reliable, applicable to any system of internal coordinates, and computationally more efficient than the traditional method of iterative back transformations. As a bonus, the HOPE method determines not just the Cartesian step vector but also a continuous step path expressed in the form of a polynomial, which is useful for determining reaction coordinates, for integrating trajectories, and for visualization. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
10.
A resonance Raman intensity analysis of the metal-to-ligand charge-transfer (MLCT) transition for the rhenium compound Re(2-(2'-pyridyl)quinoxaline)(CO)(3)Cl (RePQX) is presented. Photoinduced geometry changes are calculated, and the results are presented using the vibrational normal modes and the redundant internal coordinates. A density functional theory calculation is used to determine the ground-state nonresonant Raman spectrum and a transformation matrix that transforms the redundant internal coordinates into the normal modes. The normal modes nu(37) (rhenium coordination sphere distortion) and nu(75) (ligand skeletal stretch) show the largest photoinduced geometry change (Delta = 1.0 and 0.7, respectively). A single carbonyl mode is enhanced in the resonance Raman spectra. Time-dependent density functional theory is used to calculate excited-state geometry changes, which are subsequently used to determine the signs of the photoinduced normal mode displacements. Transforming to internal coordinates reveals that all the CO bond lengths are displaced in the excited state. The Re-C and C-C ligand bond lengths are also displaced in the excited state. The results are discussed in terms of a simple one-electron picture for the electronic transition. Many bond angles and torsional coordinates are also displaced by the metal-to-ligand charge transfer, and most of these are associated with the rhenium coordination sphere. It is demonstrated that using internal coordinates presents a clear picture of the geometry changes associated with photoinduced electron transfer in metal polypyridyl systems.  相似文献   

11.
The AMBER and CHARMM force fields are analyzed from the viewpoint of the permutational symmetry of the potential for feasible exchanges of identical atoms and chemical groups in amino and nucleic acids. In each case, we propose schemes for symmetrizing the potentials, which greatly facilitate the bookkeeping associated with constructing kinetic transition networks via geometry optimization. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

12.
A general methodology is presented to perform direct numerical simulations of particle dispersions in a shear flow with Lees-Edwards periodic boundary conditions. The Navier-Stokes equation is solved in oblique coordinates to resolve the incompatibility of the fluid motions with the sheared geometry, and the force coupling between colloidal particles and the host fluid is imposed by using a smoothed profile method. The validity of the method is carefully examined by comparing the present numerical results with experimental viscosity data for particle dispersions in a wide range of volume fractions and shear rates including nonlinear shear-thinning regimes.  相似文献   

13.
A computational algorithm for the variable metric method of molecular geometry optimization using internal instead of cartesian coordinates is presented. The greater efficiency attainable using internal coordinates is shown using ethylene and methanol as examples. A high degree of accuracy in determining bond lengths and angles was achieved even when, as in the case of some ethers studied, the resulting equilibrium structures were essentially different from the initial ones constructed from experimental data.  相似文献   

14.
This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.  相似文献   

15.
Linearized embedding is a variant on the usual distance geometry methods for finding atomic Cartesian coordinates given constraints on interatomic distances. Instead of dealing primarily with the matrix of interatomic distances, linearized embedding concentrates on properties of the metric matrix, the matrix of inner products between pairs of vectors defining local coordinate systems within the molecule. We developed a pair of general computer programs that first convert a given arbitrary conformation of any covalent molecule from atomic Cartesian coordinates representation to internal local coordinate systems enforcing rigid valence geometry and then generate a random sampling of conformers in terms of atomic Cartesian coordinates that satisfy the rigid local geometry and a given list of interatomic distance constraints. We studied the sampling properties of this linearized embedding algorithm vs. a standard metric matrix embedding program, DGEOM, on cyclohexane, cycloheptane, and a cyclic pentapeptide. Linearized embedding always produces exactly correct bond lengths, bond angles, planarities, and chiralities; it runs at least two times faster per structure generated, and is successful as much as four times as often at refining these structures to full agreement with the constraints. It samples the full range of allowed conformations broadly, although not perfectly uniformly. Because local geometry is rigid, linearized embedding's sampling in terms of torsion angles is more restricted than that of DGEOM, but it finds in some instances conformations missed by DGEOM. © 1992 by John Wiley & Sons, Inc.  相似文献   

16.
The geometry optimization in delocalized internal coordinates is discussed within the framework of the density functional theory program deMon. A new algorithm for the selection of primitive coordinates according to their contribution to the nonredundant coordinate space is presented. With this new selection algorithm the excessive increase in computational time and the deterioration of the performance of the geometry optimization for floppy molecules and systems with high average coordination numbers is avoided. A new step selection based on the Cartesian geometry change is introduced. It combines the trust radius and line search method. The structure of the new geometry optimizer is described. The influence of the SCF convergence criteria and the grid accuracy on the geometry optimization are discussed. A performance analysis of the new geometry optimizer using different start Hessian matrices, basis sets and grid accuracies is given.  相似文献   

17.
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.  相似文献   

18.
This paper presents an efficient alternative to well established algorithms for molecular geometry optimization. This approach exploits the approximate decoupling of molecular energetics in a curvilinear internal coordinate system, allowing separation of the 3N-dimensional optimization problem into an O(N) set of quasi-independent one-dimensional problems. Each uncoupled optimization is developed by a weighted least squares fit of energy gradients in the internal coordinate system followed by extrapolation. In construction of the weights, only an implicit dependence on topologically connected internal coordinates is present. This new approach is competitive with the best internal coordinate geometry optimization algorithms in the literature and works well for large biological problems with complicated hydrogen bond networks and ligand binding motifs.  相似文献   

19.
Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N‐terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
The molecular Hamiltonian of polyatomic molecules has been obtained. A general choice of internal coordinates depending on external parameters was considered. The rovibrational Hamiltonian for this set of coordinate system was derived in general terms as a function of the external parameters a and b. This procedure is also applicable to various kinds of internal coordinates in a straightforward way. The rovibrational Hamiltonian of triatomic molecules is considered as an application of this general formulation. In addition, orthogonal Radau coordinates are considered as cases of this new approach  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号