首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory calculations have predicted a planar dicationic nanocluster CW consisting of a five‐membered tungsten ring and a planar pentacoordinate carbon atom located at the ring center. Although the regular‐pentagonal tungsten ring has strong aromaticity as a whole in terms of a magnetic criterion, detailed analyses have suggested that it is conflicting d‐orbital aromaticity in which δ‐ and σ‐aromaticity coexist with relatively weak π‐antiaromaticity. The system is unique in that δ‐aromaticity is involved in conflicting aromaticity, as well as being found in a conjugated ring consisting of more than three metal atoms. Although the planar pentagonal cluster ion is not the global minimum on the potential energy surface of CW, molecular dynamics simulations suggest that the planar species is fairly stable under mild conditions. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
meso‐Hexakis(pentafluorophenyl)‐substituted neutral hexaphyrin with a 26π‐electronic circuit can be regarded as a real homolog of porphyrin with an 18π‐electronic circuit with respect to a quite flat molecular structure and strong aromaticity. We have investigated additional aromaticity enhancement of meso‐hexakis(pentafluorophenyl)[26]hexaphyrin(1.1.1.1.1.1) by deprotonation of the inner N? H groups in the macrocyclic molecular cavity to try to induce further structural planarization. Deprotonated mono‐ and dianions of [26]hexaphyrin display sharp B‐like bands, remarkably strong fluorescence, and long‐lived singlet and triplet excited‐states, which indicate enhanced aromaticity. Structural, spectroscopic, and computational studies have revealed that deprotonation induces structural deformations, which lead to a change in the main conjugated π‐electronic circuit and cause enhanced aromaticity.  相似文献   

3.
Due to the insufficient interaction of the phosphorus lone pair with the butadiene moiety, the aromaticity of the phosphole ring is lower than that of its counterpart's pyrrole, furan, and thiophene. Considering the high importance of phosphole core in organic chemistry, increasing its stability through reinforcement its aromaticity can be very valuable. In the present work, the aromaticity of the phosphole on the anomeric carbon in both the axial and equatorial conformers of the unsaturated six-membered heterocycles, using structural, electronic, energetic, and magnetic indices were investigated by the DFT-B3LYP/6-311++G(d,p) computational method. Electron pumping through anomeric and then Schleyer hyperconjugative interaction increase the aromaticity of the phosphole ring in axial conformer of compounds 1–11 . Based on various types of aromaticity indices, the results showed that the phosphole ring in the axial position has far higher aromaticity than the equatorial position. The phosphole ring containing cyano groups shows an efficient anomeric effect and, as a result, higher aromaticity. Excellent correlations were observed between aromaticity indices with different backgrounds.  相似文献   

4.
Conformational control over the highly flexible π‐conjugated system of expanded porphyrins is a key step toward the fundamental understanding of aromaticity and for the development of molecular electronics. We have synthesized unprecedented hexaphyrin–cyclodextrin (HCD) capped hybrids in which the hexaphyrin part is constrained in a planar rectangular conformation in either a 26 or a 28 π‐electron oxidation state ( [26] / [28]HCD ). These structures display strong aromaticity and antiaromaticity, respectively, exhibit markedly different chiroptical properties, and are interconvertible upon the addition of DDQ or NaBH(OAc)3, thus affording a rare switchable aromatic–antiaromatic system with a free‐base expanded porphyrin. Conformational analysis revealed discrimination of the two coordination sites of the hexaphyrin, one of which was coupled to a confined asymmetric environment, and fluxional behavior consisting of apparent rotation of the hexaphyrin cap through a shape‐shifting mechanism.  相似文献   

5.
We present a systematic theoretical study based on semi-empirical, Hartree-Fock (HF), and density functional theory (DFT) models of a series of polycyclic aromatic hydrocarbons (PAHs) that exhibit hollow sites. In this study we focus particularly on the magnetic criteria of aromaticity, namely (1)H NMR and nucleus-independent chemical shifts (NICS), and on their relationships with other electronic properties. The computed shifts and NICS indices indicate that an external magnetic field induces exceptionally strong ring currents in even-layered PAH doughnuts, in particular in the layer directly adjacent to the central hole of double-layered compounds. These exceptionally strong ring currents also correlate with particularly small HOMO-LUMO gaps and electronic excitation energies and to abnormally high polarizabilities, indicating in turn that these compounds have a more pronounced metallic character. Comparison is made with further depictions of aromaticity in these systems and in [18]-[66]annulene rings by employing topological, structural, and energetic criteria.  相似文献   

6.
采用6-311G(d)/B3LYP计算方法,通过对多个有机物和中间体的分子结构和能量的计算,探讨了如下问题:(1) Birch还原的区域选择性问题;(2)氯甲基的电子效应问题;(3)反芳香性对有机物结构影响问题;(4)多环化合物局部芳香性问题。这些计算与探讨丰富了有机化学教学内容,有利于大学生对芳香烃章节的学习。  相似文献   

7.
介绍了简单判断多环化合物的芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的方法及其在有机化学中的应用.  相似文献   

8.
Density functional theory calculations (B3LYP) have been carried out to investigate the 4π‐electron systems of 2,4‐disila‐1,3‐diphosphacyclobutadiene (compound 1 ) and the tetrasilacyclobutadiene dication (compound 2 ). The calculated nucleus‐independent chemical shift (NICS) values for these two compounds are negative, which indicates that the core rings of compounds 1 and 2 have a certain amount of aromaticity. However, deep electronic analysis reveals that neither of these two formal 4π‐electron four‐membered ring systems is aromatic. Compound 1 has very weak, almost negligible antiaromaticity, and the amidinate ligands attached to the Si atoms play an important role in stabilizing this conjugated 4π‐electron system. The monoanionic bidentate ligand interacts with the conjugated π system to cause π‐orbital splitting. This ligand‐induced π‐orbital splitting effect provides an opportunity to manipulate the gap between occupied and unoccupied π orbitals in conjugated systems. Conversely, compound 2 is nonaromatic because its core ring does not have a conjugated π ring system and does not fulfill the requirements of a Hückel system.  相似文献   

9.
Within the continuum of π‐extended quinoidal electronic structures exist molecules that by design can support open‐shell diradical structures. The prevailing molecular design criteria for such structures involve proaromatic nature that evolves aromaticity in open‐shell diradical resonance structures. A new diradical species built upon a quinoidal methano[10]annulene unit is synthesized and spectroscopically evaluated. The requisite intersystem crossing in the open‐shell structure is accompanied by structural reorganization from a contorted Möbius aromatic‐like shape in S0 to a more planar shape in the Hückel aromatic‐like T1. This stability was attributed to Baird’s Rule which dictates the aromaticity of 4n π‐electron triplet excited states.  相似文献   

10.
π‐Conjugated macrocycles containing all‐benzenoid rings usually show local aromaticity, but reported herein is the macrocycle CBQT , containing alternating para‐quinodimethane and triphenylamine units displaying annulene‐like anti‐aromaticity at low temperatures as a result of structural rigidity and participation of the bridging nitrogen atoms in π‐conjugation. It was easily synthesized by intermolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. X‐ray crystallographic structures of CBQT , as well as those of its dication, trication, and tetracation were obtained. The dication and tetracation exhibited global aromaticity and antiaromaticity, respectively, as confirmed by NMR measurements and theoretical calculations. Both the dication and tetracation possess open‐shell singlet ground states, with a small singlet–triplet gap.  相似文献   

11.
Aromaticity is a fundamental concept in chemistry, with many theoretical and practical implications. Although most organic compounds can be categorized as aromatic, non-aromatic, or antiaromatic, it is often difficult to classify borderline compounds as well as to quantify this property. Many aromaticity criteria have been proposed, although none of them gives an entirely satisfactory solution. The inability to fully arrange organic compounds according to a single criterion arises from the fact that aromaticity is a multidimensional phenomenon. Neural networks are computational techniques that allow one to treat a large amount of data, thereby reducing the dimensionality of the input set to a bidimensional output. We present the successful applications of Kohonen's self-organizing maps to classify organic compounds according to aromaticity criteria, showing a good correlation between the aromaticity of a compound and its placement in a particular neuron. Although the input data for the training of the network were different aromaticity criteria (stabilization energy, diamagnetic susceptibility, NICS, NICS(1), and HOMA) for five-membered heterocycles, the method can be extended to other organic compounds. Some useful features of this method are: 1) it is very fast, requiring less than one minute of computational time to place a new compound in the map; 2) the placement of the different compounds in the map is conveniently visualized; 3) the position of a compound in the map depends on its aromatic character, thus allowing us to establish a quantitative scale of aromaticity, based on Euclidean distances between neurons, 4) it has predictive power. Overall, the results reported herein constitute a significant contribution to the longstanding debate on the quantitative treatment of aromaticity.  相似文献   

12.
13.
Aromaticity, an old but still fantastic topic, has long attracted considerable interest of chemists. Generally, π aromaticity is described by π‐electron delocalization in closed circuits of unsaturated compounds whereas σ‐electron delocalization in saturated rings leads to σ aromaticity. Interestingly, our recent study shows that σ aromaticity can be dominating in an unsaturated three‐membered ring (3MR) of cyclopropaosmapentalene. An interesting question is raised: Can the σ aromaticity, which is dominant in the unsaturated 3MR, be extended to other cyclopropametallapentalenes? If so, how could the metal centers, ligands, and substituents affect the σ aromaticity? Here, we report a thorough theoretical study on these issues. The nucleus‐independent chemical shift calculations and the anisotropy of the current‐induced density plots reveal the dominant σ aromaticity in these unsaturated 3MRs. In addition, our calculations show that substituents on the 3MRs have significant effects on the σ aromaticity, whereas the ligand effect is particularly small.  相似文献   

14.
A dithieno[a,h]‐s‐indacene‐ (DTI‐) based diradicaloid DTI‐2Br was synthesized and its open‐shell singlet diradical character was validated by magnetic measurements. On the other hand, its macrocyclic trimer DTI‐MC3 and tetramer DTI‐MC4 turned out to be closed‐shell compounds with global antiaromaticity, which was supported by X‐ray crystallographic analysis and NMR spectroscopy, assisted by ACID and 2D‐ICSS calculations. Such change can be explained by a subtle balance between two types of antiferromagnetic spin–spin coupling along the π‐conjugated macrocycles. The dications of DTI‐MC3 and DTI‐MC4 turned out to be open‐shell singlet diradical dications, with a singlet–triplet energy gap of ?2.90 and ?2.60 kcal mol?1, respectively. At the same time, they are both global aromatic. Our studies show that intramolecular spin–spin interactions play important roles on electronic properties of π‐conjugated macrocycles.  相似文献   

15.
The dications 6, 7, and 8 and dianions 9, 10, and 11 of the bistricyclic aromatic enes bifluorenylidene (1), 1,1'-biphenalenylidene (2), and 9-(9H-fluoren-9-ylidene)-1H-phenalene (4), as well as monocations 12a and 13a and monoanions 14a and 15a of phenalene (3) and fluorene (5), were subjected to a systematic DFT and ab initio study. B3LYP and MP2 methods were employed to estimate the relative aromaticity/antiaromaticity of these ions, using energetic, magnetic, and structural criteria. The couplings of monoions 12a-15a to give the respective diions 6-11 result in a similar destabilization in both the fluorene and phenalene series. The interactions between the C13H8 units in diions 6-11 are weak and are not expected to result in a significant loss of aromaticity/gain of antiaromaticity, as compared with the respective monoions. The antiaromaticity of bifluorenylidene dication (6), relative to that of two fluorenyl cations (12a), is only slightly enhanced as compared with the aromaticity of biphenalenylidene dication ((E)-7)) relative to that of two phenalenyl cations (13a). In particular, the homodesmotic reaction 6 + 2.13a = (E)-7 + 2.12a is only slightly exothermic, DeltaE(Tot) = -6.0 kJ/mol. The energetic effect of the analogous reaction involving anions 9 + 2.15a = (E)-10 + 2.14a is even smaller, DeltaE(Tot) = -3.4 kJ/mol. Bifluorenylidene dianion (9) and 1,1'-biphenalenylidene dianion ((E)-10) are aromatic, but the employed criteria disagree about their relative aromaticity. The electronic and structural properties of heteromerous dication 8 and dianion 11 lie between those of the homomerous diions. Thus, dications 6-8 and dianions 9-11 form a continuum of aromaticity/antiaromaticity.  相似文献   

16.
The synthesis, spectroscopic properties, and computational analysis of an imidazole‐based analogue of porphycene are described. The macrocycle, given the trivial name “imidacene”, was prepared by reductive coupling of a diformyl‐substituted 2,2′‐biimidazole using low‐valent titanium, followed by treatment with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone. Imidacene displays a porphyrin‐like electronic structure, as judged by its 1H NMR, 13C NMR, and UV/Vis spectral characteristics. Despite a cyclic 18 π‐electron pathway, dichloromethane or ethyl acetate solutions of imidacene were found to undergo rapid decomposition, even in the absence of light and air. A series of high‐level theoretical calculations, performed to probe the origin of this instability, revealed that the presence of a delocalized 18 π‐electron pathway in both imidacene and porphycene provides less aromatic stabilization energy than locally aromatic 6 π‐electron heterocycles in their reduced counterparts. That reduction of imidacene occurs on perimeter nitrogen atoms allows it to maintain its planarity and two stabilizing intramolecular hydrogen bonds, thereby distinguishing it from porphycene and, more generally, from porphyrin. Despite the presence of both 18 π‐ and 22 π‐electron pathways in the planar, reduced form of imidacene, aromaticity is evident only in the 6 π‐electron five‐membered rings. Our computational analysis predicts that routine 1H NMR spectroscopy can be used to distinguish between local and global aromaticity in planar porphyrinoid macrocycles; the difference in the chemical shift for the internal NH protons is expected to be on the order of 19 ppm for these two electronically disparate sets of ostensibly similar compounds.  相似文献   

17.
Density functional theory calculations of polypyridyl ruthenium complexes with polyaromatic ligands have been performed to understand the metal fragment effect on the modulation of their electronic properties and the influence on the aromatic character. The change of positions of the nitrogen atoms in the ligand structure, as well as the metal moiety, seems to influence the electronic behavior of the π-extended structure and the aromatic character of the complexes at both the ground and excited states. In this framework, structural, electronic, and magnetic-based aromaticity indices were used to understand the aromaticity of the free and coordinated ligands. The aromaticity character of the ligands is highly influenced by the metal fragment, and the aromaticity/antiaromaticity is achieved according to both the electron-withdrawing capability of the ligand and the metal fragment. The electronic distribution observed on the aromatic ligand determines their π-stacking ability; thus, it is proposed that the control of the π-stacking ability is modulated according to the electronic nature of the ruthenium moiety.  相似文献   

18.
Linear polyacene (LPA) mimics containing multiple heterocycles have been computationally designed by annulating 1,4‐dihydro‐1,4‐azaborinine moieties to benzene (aB1–aB5), naphthalene (aN1–aN5), anthracene (aA1–aA5), and tetracene (aT1–aT5) cores. DFT studies conducted on them using M06L/6‐311++G(d,p) method reveal a perfect planar structure for all and suggest the utilization of nitrogen lone pairs for aromatic π‐electron delocalization. The computed values of aromaticity indices such as HOMA, NICS, and dehydrogenation energy (E dh) of heterocycles support strong aromatic character for each six‐membered ring in the LPA mimics. On the basis of the minimum value of the molecular electrostatic potential (V min) observed on each LPA unit in the LPA mimics, the extended delocalization of π‐electrons is verified. The energetic parameter E dh showed strong linear correlation with HOMA, NICS and V min parameters, which strongly supports the multidimensional character of aromaticity in LPA mimics. The electronic property modification is shown by the theoretical absorption spectra data and singlet‐triplet energy gap (ΔE ST). The bandgap and ΔE ST tunings are achieved for LPA mimics by selecting appropriate number of azaborinine type units and the size of LPA core used for annulation. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
Nucleus‐independent chemical shift (NICS)‐based methods are very popular for the determination of the induced magnetic field under an external magnetic field. These methods are used mostly (but not only) for the determination of the aromaticity and antiaromaticity of molecules and ions, both qualitatively and quantitatively. The ghost atom that serves as the NICS probe senses the induced magnetic field and reports it in the form of an NMR chemical shift. However, the source of the field cannot be determined by NICS. Thus, in a multi‐ring system that may contain more than one induced current circuit (and therefore more than one source of the induced magnetic field) the NICS value may represent the sum of many induced magnetic fields. This may lead to wrong assignments of the aromaticity (and antiaromaticity) of the systems under study. In this paper, we present a NICS‐based method for the determination of local and global ring currents in conjugated multi‐ring systems. The method involves placing the NICS probes along the X axis, and if needed, along the Y axis, at a constant height above the system under study. Following the change in the induced field along these axes allows the identification of global and local induced currents. The best NICS type to use for these scans is NICSπZZ, but it is shown that at a height of 1.7 Å above the molecular plane, NICSZZ provides the same qualitative picture. This method, namely the NICS‐XY‐scan, gives information equivalent to that obtained through current density analysis methods, and in some cases, provides even more details.  相似文献   

20.
In general, aromaticity can be clarified as π‐ and σ‐aromaticity according to the type of electrons with major contributions. The traditional π‐aromaticity generally describes the π‐conjugation in fully unsaturated rings whereas σ‐aromaticity may stabilize fully saturated rings with delocalization caused by σ‐electron conjugation. Reported herein is an example of σ‐aromaticity in an unsaturated three‐membered ring (3 MR), which is supported by experimental observations and theoretical calculations. Specifically, when the 3 MR in cyclopropaosmapentalene is cleaved by ethane through two isodesmic reactions, both of them are highly endothermic (+29.7 and +35.0 kcal mol?1). These positive values are in sharp contrast to the expected exothermicity, thus indicating aromaticity in the 3 MR. Further nucleus‐independent chemical shift and anisotropy of the current‐induced density calculations reveal the nature of σ‐aromaticity in the unsaturated 3 MR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号