首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinel cathode materials consisting of LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres have been synthesized by a facile solution‐phase coating and subsequent solid‐phase lithiation route in an atmosphere of air. When used as the cathode of lithium‐ion batteries, the double‐shell LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres thus obtained show a high specific capacity of 120 mA h g?1 at 1 C rate, and excellent rate capability (90 mAhg?1 at 10 C) over the range of 3.5–5 V versus Li/Li+ with a retention of 95 % over 500 cycles.  相似文献   

2.
Herein,we report on the synthesis and lithium storage properties of electrospun one-dimensional(1D) CuFe_2O_4 nanomaterials.1D CuFe_2O_4nanotubes and nanorods were fabricated by a single spinneret electrospinning method followed by thermal decomposition for removal of polymers from the precursor fibers.The as-prepared CuFe_2O_4 nanotubes with wall thickness of ~50 nm presented diameters of ~150 nm and lengths up to several millimeters.It was found that phase separation between the electrospun composite materials occured during the electrospinning process,while the as-spun precursor nanofibers composed of polyacrylonitrile(PAN),polyvinylpyrrolidone(PVP) and metal salts might possess a core-shell structure(PAN as the core and PVP/metal salts composite as the shell) and then transformed to a hollow structure after calcination.Moreover,as a demonstration of the functional properties of the 1D nanostructure.CuFe_2O_4 nanotubes and nanorods were investigated as anodes for lithium ion batteries(LIBs).It was demonstrated that CuFe_2O_4 nanotubes not only delivered a high reversible capacity of ~816 mAh·g~(-1) at a current density of 200 mA·g~(-1)over 50 cycles,but also showed superior rate capability with respect to counterpart nanorods.Probably,the enhanced electrochemical performance can be attributed to its high specific surface areas as well as the unique hollow structure.  相似文献   

3.
The spinel material LiNi0.5Mn1.5O4 displays a remarkable property of high charge/discharge voltage plateau at around 4.7 V. It is a promising cathode material for new-generation lithium-ion batteries with high voltage. Recently, a lot of researches related to this material have been carried out. In this review we present a summary of these researches, including the structure, the mechanism of high voltage, and the latest developments in improving its electrochemical properties like rate ability and cycle performance at elevated temperature, etc. Doping element and synthesizing nanoscale material are effective ways to improve its rate ability. The novel battery systems, like LiNi0.5Mn1.5O4/Li5Ti4O12 with good electrochemical properties, are also in progress.  相似文献   

4.
LiNi0.5Mn1.5O4 is regarded as a promising cathode material to increase the energy density of lithium‐ion batteries due to the high discharge voltage (ca. 4.7 V). However, the interface between the LiNi0.5Mn1.5O4 cathode and the electrolyte is a great concern because of the decomposition of the electrolyte on the cathode surface at high operational potentials. To build a stable and functional protecting layer of Li3PO4 on LiNi0.5Mn1.5O4 to avoid direct contact between the active materials and the electrolyte is the emphasis of this study. Li3PO4‐coated LiNi0.5Mn1.5O4 is prepared by a solid‐state reaction and noncoated LiNi0.5Mn1.5O4 is prepared by the same method as a control. The materials are fully characterized by XRD, FT‐IR, and high‐resolution TEM. TEM shows that the Li3PO4 layer (<6 nm) is successfully coated on the LiNi0.5Mn1.5O4 primary particles. XRD and FT‐IR reveal that the synthesized Li3PO4‐coated LiNi0.5Mn1.5O4 has a cubic spinel structure with a space group of Fd$\bar 3$ m, whereas noncoated LiNi0.5Mn1.5O4 shows a cubic spinel structure with a space group of P4332. The electrochemical performance of the prepared materials is characterized in half and full cells. Li3PO4‐coated LiNi0.5Mn1.5O4 shows dramatically enhanced cycling performance compared with noncoated LiNi0.5Mn1.5O4.  相似文献   

5.
Peng  Tao  Guo  Wei  Liu  Chang  Zhang  Yingge  Wang  Yangbo  Guo  Yan  Zhang  Deyang  Yan  Hailong  Lu  Yang  Luo  Yongsong 《Journal of Solid State Electrochemistry》2019,23(10):2927-2935
Journal of Solid State Electrochemistry - The rational design of the structure is the key to engineering spinel LiNi0.5Mn1.5O4 cathode material to enhance Li+/electron transport and relieve the...  相似文献   

6.
In this work the surface of LiNi\begin{document}$_{0.5}$\end{document}Mn\begin{document}$_{1.5}$\end{document}O\begin{document}$_{4}$\end{document} (LMN) particles is modified by Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document} coating through a simple wet grinding method, the electronic conductivity is significantly improved from 1.53\begin{document}$\times$\end{document}10\begin{document}$^{-7}$\end{document} S/cm to 3.15\begin{document}$\times$\end{document}10\begin{document}$^{-5}$\end{document} S/cm after 2.6 wt% Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document} coating. The electrochemical test results indicate that Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document} coating dramatically enhances both rate performance and cycling capability (at 55 ℃) of LNM. Among the samples, 2.6 wt% Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document}-coated LNM not only exhibits excellent rate capability (a large capacity of 108 mAh/g at 10 C rate) but also shows 78% capacity retention at 55 ℃ and 1 C rate after 100 cycles.  相似文献   

7.
Xia  Yang  Zhou  Lexin  Wang  Kun  Lu  Chengwei  Xiao  Zhen  Mao  Qinzhong  Lu  Xiaoxiao  Zhang  Jun  Huang  Hui  Gan  Yongping  He  Xinping  Zhang  Wenkui  Xia  Xinhui 《Journal of Solid State Electrochemistry》2023,27(6):1363-1372
Journal of Solid State Electrochemistry - With the scarcity of cobalt resources and soaring prices, the removal of cobalt from nickel-rich layered cathodes is now a priority to reduce the material...  相似文献   

8.
9.
In recent years, the controlled synthesis of inorganic micro‐ and nanostructures with hollow interiors has attracted considerable attention because of their widespread potential applications. A feasible method for synthesizing Li3VO4 by a template‐free, solution synthesis of single‐crystalline microboxes with well‐defined non‐spherical morphologies has been reported. This study provides the useful information to produce other hollow structure materials to the broad audience of readers. The formation of hollow structure and the influence of raw materials have been presented. The thus‐synthesized Li3VO4 exhibited significantly improved conductivity, rate capability, and cycling life compared to commercial graphite, synthesized Li4Ti5O12, and previously reported Li3VO4.  相似文献   

10.
随着新能源电动汽车和大容量储能的快速发展,亟需开发高能量密度、高功率密度的锂离子电池。镍锰酸锂(LiNi0.5Mn1.5O4)由于具有高电压平台(4.7V)、较高的能量密度和功率密度、资源丰富、成本低等优点,被认为是最具潜力的锂离子电池正极材料之一。然而,在高温条件下,LiNi0.5Mn1.5O4会与电解液发生严重的界面副反应,导致循环性能变差,这严重制约了其商业化进程。因此,改善LiNi0.5Mn1.5O4的高温特性成为锂离子电池领域的研究热点之一。本文对近期LiNi0.5Mn1.5O4材料相关研究的主要成果进行综述,以LiNi0.5Mn1.5O4的基本特性和现存挑战入手,着重关注离子掺杂、表面包覆和表面掺杂等策略提升材料的高温性能,并为后续研究提出建议和展望。  相似文献   

11.
Two water-soluble binders of carboxymethyl cellulose (CMC) and sodium alginate (SA) have been studied in comparison with N-methylpyrrolidone-soluble poly(vinylidene difluoride–co-hexafluoropropylene) (PVdF-HFP) to understand their effect on the electrochemical performance of a high-voltage lithium nickel manganese oxide (LNMO) cathode. The electrochemical performance has been investigated in full cells using a Li4Ti5O12 (LTO) anode. At room temperature, LNMO cathodes prepared with aqueous binders provided a similar electrochemical performance as those prepared with PVdF-HFP. However, at 55 °C, the full cells containing LNMO with the aqueous binders showed higher cycling stability. The results are supported by intermittent current interruption resistance measurements, wherein the electrodes with SA showed lower resistance. The surface layer formed on the electrodes after cycling has been characterized by X-ray photoelectron spectroscopy. The amount of transition metal dissolutions was comparable for all three cells. However, the amount of hydrogen fluoride (HF) content in the electrolyte cycled at 55 °C is lower in the cell with the SA binder. These results suggest that use of water-soluble binders could provide a practical and more sustainable alternative to PVdF-based binders for the fabrication of LNMO electrodes.  相似文献   

12.
Nanosheet‐assembled hierarchical V2O5 hollow microspheres are successfully obtained from V‐glycolate precursor hollow microspheres, which in turn are synthesized by a simple template‐free solvothermal method. The structural evolution of the V‐glycolate hollow microspheres has been studied and explained by the inside‐out Ostwald‐ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V2O5 hollow microspheres with a high surface area of 70 m2 g?1 can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium‐ion batteries, the as‐prepared hierarchical V2O5 hollow spheres deliver a specific discharge capacity of 144 mA h g?1 at a current density of 100 mA g?1, which is very close to the theoretical capacity (147 mA h g?1) for one Li+ insertion per V2O5. In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium‐ion batteries.  相似文献   

13.
14.
本文首先通过共沉淀法和固相球磨法制备了纳米级的LiNi0.5Mn1.5O4高电压正极材料,然后通过溶胶-凝胶法制备了表面包覆CuO的CuO-LiNi0.5Mn1.5O4复合材料.通过对CuO包覆量为1%,3%和5%的复合材料的电化学性能对比,发现当包覆量为1%时,材料的性能最佳.在1 C下,材料的放电比容量高达126.1 mA h g?1,循环100次后容量保持率在99.5%.CuO包覆在纳米LiNi0.5Mn1.5O4材料表面,阻止电解液与活性颗粒的直接接触,削弱了电解液与LiNi0.5Mn1.5O4的相互作用,进而在一定程度上减缓了电解液的分解;CuO的包覆同时还缓解了电解液中HF对材料的攻击,阻止了锰的溶解和由此带来的结构改变,进而提高了材料的循环稳定性.  相似文献   

15.
16.
Porous V2O5 nanotubes, hierarchical V2O5 nanofibers, and single‐crystalline V2O5 nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium‐ion batteries (LIBs), the as‐formed V2O5 nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V2O5 nanotubes provided short distances for Li+‐ion diffusion and large electrode–electrolyte contact areas for high Li+‐ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg?1 whilst the energy density remained as high as 201 W h kg?1, which, as one of the highest values measured on V2O5‐based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single‐crystalline V2O5 nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition‐metal‐oxide‐based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

17.
Two kinds of topochemical conversion routes from cobalt hydroxide precursors to cobalt oxide-based porous nanostructures are presented: pyrolysis in air and hydrothermal treatment by the Kirkendall diffusion effect. These cobalt hydroxide precursors were synthesized by a simple hydrothermal approach with sodium acetate as mineralizer at 200 °C. Detailed proof indicates that the process of cobalt hydroxide precursor growth is dominated by a nucleation, dissolution, renucleation, growth, and exfoliation mechanism. By the topochemical conversion processes several Co(3)O(4) nanostructures, such as cobalt oxide-coated cobalt hydroxide carbonate nanowires, cobalt oxide nanotubes, hollow cobalt oxide spheres, and porous cobalt oxide nanowires, have been synthesized. The obtained Co(3)O(4) nanostructures have also been evaluated as the anode materials in lithium-ion batteries. It was found that the as-prepared Co(3)O(4) nanostructures exhibited high reversible capacity and good cycle performance due to their porous structure and small size.  相似文献   

18.
锂离子电池用高电位正极材料LiNi0.5Mn1.5O4   总被引:1,自引:0,他引:1  
由于具有工作电压高、工作范围宽、比能量大、无污染、使用寿命长等优点,锂离子电池具有广阔的应用前景。 然而,目前商业化的锂离子电池仍无法满足电动汽车对电池低成本及高能量密度的要求。研发比能量更高、价格更低廉、寿命更长的锂离子电池成为电动汽车产业发展的关键。尖晶石结构的镍锰酸锂(LiNi0.5Mn1.5O4)具有三维扩散通道,有利于锂离子的传输,且结构稳定;其理论放电比容量可达147 mAh ·g-1。 更重要的是,其电压平台高达4.7 V,具有高的能量密度与功率密度,被认为是未来锂离子电池发展中最具前途与吸引力的正极材料之一。本文介绍了LiNi0.5Mn1.5O4的结构、制备方法、掺杂与包覆改性研究及其应用前景,着重介绍了材料的改性方法并指出LiNi0.5Mn1.5O4目前亟需解决的问题和研究重点。  相似文献   

19.
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).  相似文献   

20.
以一定比例的LiCl-LiNO_3为低熔点共混物,采用熔盐法合成了电化学性能良好的LiNi_(0.5)Mn_(1.5)O_4,XRD表征结果显示产物为单一尖晶石相,SEM表征显示出材料良好的晶形,充放电测试结果显示出材料在4.7V平台附近有较大的可逆容量,在4.1V平台附近仅有较少的可逆容量。文章讨论了影响产物晶形和性能的各种因素,建议通过退火、改变合成气氛来消除4.1V平台的产生;研究结果还显示,容量的损失主要发生在第一次放电过程中在高电位区时的电解液的氧化分解.建议通过更换适合在高电位条件下工作的电解液来克服此问题;同时,通过调整低熔点共混物的配比、气氛、反应时间等条件可以实现对产物的结晶形态和大小进行适当的控制,显示了该方法在制备LiNi_(0.5)Mn_(1.5)O_4材料中的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号