首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new Zn(2+) fluorescent chemosensor N'-(3,5-di-tert-butylsalicylidene)-2-hydroxybenzoylhydrazine (H(3)L(1)) and its complexes [Zn(HL(1))C(2)H(5)OH](∞) (1) and [Cu(HL(1))(H(2)O)]CH(3)OH (2) have been synthesized and characterized in terms of their crystal structures, absorption and emission spectra. H(3)L(1) displays high selectivity for Zn(2+) over Na(+), K(+), Mg(2+), Ca(2+) and other transition metal ions in Tris-HCl buffer solution (pH = 7.13, EtOH-H(2)O = 8?:?2 v/v). To obtain insight into the relation between the structure and selectivity, a similar ligand 3,5-di-tert-butylsalicylidene benzoylhydrazine (H(2)L(2)), which lacks the hydroxyl group substituent in salicyloyl hydrazide compared with H(3)L(1), and its complex [Zn(2)(HL(2))(2)(CH(3)COO)(2)(C(2)H(5)OH)] (3), [Co(L(2))(2)][Co(DMF)(4)(C(2)H(5)OH)(H(2)O)] (4), [Fe(HL(2))(2)]Cl·2CH(3)OH (5), have also been investigated as a reference. H(3)L(1) exhibits improved selectivity for Zn(2+) compared to H(2)L(2). The findings indicate that the hydroxyl group substituent exerts an effect on the spectroscopic properties, complex structures and selectivity of the fluorescent sensor.  相似文献   

2.
A mitochondria-targeted fluorescent sensor (Mito-ST), constructed by integrating a sulfamoylbenzoxadiazole fluorophore with a phosphonium group, displays the specific Zn(2+)-induced hypsochromic shifts of both excitation (69 nm) and emission (35 nm) maxima. Its ratiometric Zn(2+) imaging ability via dual excitation mode has been applied in MCF-7 cells to clarify the different behaviours of mitochondrial Zn(2+) release stimulated by H(2)O(2) and SNOC.  相似文献   

3.
A series of carboxamidoquinoline-based fluorescent sensors (the AQZ family) were synthesized and characterized. The AQZ family members were highly soluble in water and showed good selectivity for Zn(2+)via enhanced fluorescence in aqueous buffer solution. Fluorescence signals could be tuned from dual-wavelength ratiometric changes to changes in the intensity of a single wavelength upon binding Zn(2+) through the introduction of different substituents onto the quinoline ring. Concentrations of free Zn(2+) of 10(-5)-10(-6) M could be detected using the sensors. Changes of substituents and their positions on the quinoline ring influenced the sensitivity for Zn(2+), but had little effect on Zn(2+) affinities.  相似文献   

4.
5.
A new 2,6-bis(5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-4-methylphenol (1) serves as a highly selective and sensitive fluorescent probe for Zn(2+) in a HEPES buffer (50 mM, DMSO:water = 1:9 (v/v), pH = 7.2) at 25 °C. The increase in fluorescence in the presence of Zn(2+) is accounted for by the formation of dinuclear Zn(2+) complex [Zn(2)(C(35)H(25)N(6)O)(OH)(NO(3))(2)(H(2)O)] (2), characterized by X-ray crystallography. The fluorescence quantum yield of the chemosensor 1 is only 0.019, and it increases more than 12-fold (0.237) in the presence of 2 equiv of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to be either unchanged or weakened. By incubation of cultured living cells (A375 and HT-29) with the chemosensor 1, intracellular Zn(2+) concentrations could be monitored through selective fluorescence chemosensing.  相似文献   

6.
(Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.  相似文献   

7.
A new water soluble cationic imidazopyridine species, viz. (1E)-1-((pyridin-2-yl)methyleneamino)-3-(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2(3H)-yl)propan-2-ol (1), as a metal chelator is prepared as its PF(6) salt and characterized. Compound 1 shows fluorescence at 438 nm on excitation at 342 nm in Tris-HCl buffer giving a fluorescence quantum yield (φ) of 0.105 and a life-time of 5.4 ns. Compound 1, as an avid DNA minor groove binder, shows pUC19 DNA cleavage activity in UV-A light of 365 nm forming singlet oxygen species in a type-II pathway. The photonuclease potential of 1 gets enhanced in the presence of Fe(2+), Cu(2+) or Zn(2+). Compound 1 itself displays anticancer activity in HeLa, HepG2 and Jurkat cells with an enhancement on addition of the metal ions. Photodynamic effect of 1 at 365 nm also gets enhanced in the presence of Fe(2+) and Zn(2+). Fluorescence-based cell cycle analysis shows a significant dead cell population in the sub-G1 phase of the cell cycle suggesting apoptosis via ROS generation. A significant change in the nuclear morphology is observed from Hoechst 33258 and an acridine orange/ethidium bromide (AO/EB) dual nuclear staining suggesting apoptosis in cells when treated with 1 alone or in the presence of the metal ions. Apoptosis is found to be caspase-dependent. Fluorescence imaging to monitor the distribution of 1 in cells shows that 1 in the presence of metal ions accumulates predominantly in the cytoplasm. Enhanced uptake of 1 into the cells within 12 h is observed in the presence of Fe(2+) and Zn(2+).  相似文献   

8.
Bo QB  Wang HY  Wang DQ  Zhang ZW  Miao JL  Sun GX 《Inorganic chemistry》2011,50(20):10163-10177
In attempts to investigate whether the photoluminescence properties of the Zn-based heterometal-organic frameworks (MOFs) could be tuned by doping different Ln(3+) (Ln = Sm, Eu, Tb) and Mn(2+) ions, seven novel 3D homo- and hetero-MOFs with a rich variety of network topologies, namely, [Zn(mip)](n) (Zn-Zn), [Zn(2)Mn(OH)(2)(mip)(2)](n) (Zn-Mn), [Mn(2)Mn(OH)(2)(mip)(2)](n) (Mn-Mn), [ZnSm(OH)(mip)(2)](n) (Zn-Sm), [ZnEu(OH)(mip)(2)](n) (Zn-Eu1), [Zn(5)Eu(OH)(H(2)O)(3)(mip)(6)·(H(2)O)](n) (Zn-Eu2), and [Zn(5)Tb(OH)(H(2)O)(3)(mip)(6)](n) (Zn-Tb), (mip = 5-methylisophthalate dianion), have been synthesized hydrothermally based on a single 5-methylisophthalic acid ligand. All compounds are fully structurally characterized by elemental analysis, FT-IR spectroscopy, TG-DTA analysis, single-crystal X-ray diffraction, and X-ray powder diffraction (XRPD) techniques. The various connectivity modes of the mip linkers generate four types of different structures. Type I (Zn-Zn) is a 3D homo-MOF with helical channels composed of Zn(2)(COO)(4) SBUs (second building units). Type II (Zn-Mn and Mn-Mn) displays a nest-like 3D homo- or hetero-MOF featuring window-shaped helical channels composed of Zn(4)Mn(2)(OH)(4)(COO)(8) or Mn(4)Mn(2)(OH)(4)(COO)(8) SBUs. Type III (Zn-Sm and Zn-Eu1) presents a complicated corbeil-like 3D hetero-MOF with irregular helical channels composed of (SmZnO)(2)(COO)(8) or (EuZnO)(2)(COO)(8) heterometallic SBUs. Type IV (Zn-Eu2 and Zn-Tb) contains a heterometallic SBU Zn(5)Eu(OH)(COO)(12) or Zn(5)Tb(OH)(COO)(12), which results in a 3D hetero-MOF featuring irregular channels impregnated by parts of the free and coordinated water molecules. Photoluminescence properties indicate that all of the compounds exhibit photoluminescence in the solid state at room temperature. Compared with a broad emission band at ca. 475 nm (λ(ex) = 380 nm) for Zn-Zn, compound Zn-Mn exhibits a remarkably intense emission band centered at 737 nm (λ(ex) = 320 nm) due to the characteristic emission of Mn(2+). In addition, the fluorescence intensity of compound Zn-Mn is stronger than that of Mn-Mn as a result of Zn(2+) behaving as an activator for the Mn(2+) emission. Compound Zn-Sm displays a typical Sm(3+) emission spectrum, and the peak at 596 nm is the strongest one (λ(ex) = 310 nm). Both Zn-Eu1 and Zn-Eu2 give the characteristic emission transitions of the Eu(3+) ions (λ(ex) = 310 nm). Thanks to the ambient different crystal-field strengths, crystal field symmetries, and coordinated bonds of the Eu(3+) ions in compounds Zn-Eu1 and Zn-Eu2, the spectrum of the former compound is dominated by the (5)D(0) → (7)F(2) transition (612 nm), while the emission of the (5)D(0) → (7)F(4) transition (699 nm) for the latter one is the most intense. Compound Zn-Tb emits the characteristic Tb(3+) ion spectrum dominated by the (5)D(4) → (7)F(5) (544 nm) transition. Upon addition of the different activated ions, the luminescence lifetimes of the compounds are also changed from the nanosecond (Zn-Zn) to the microsecond (Zn-Mn, Mn-Mn, and Zn-Sm) and millisecond (Zn-Eu1, Zn-Eu2, and Zn-Tb) magnitude orders. The structure and photoluminescent property correlations suggest that the presence of Mn(2+) and Ln(3+) ions can activate the Zn-based hetero-MOFs to emit the tunable photoluminescence.  相似文献   

9.
X Zhou  P Li  Z Shi  X Tang  C Chen  W Liu 《Inorganic chemistry》2012,51(17):9226-9231
A fluorescent sensor, N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide (HL), based on 8-aminoquinoline and 8-hydroxyquinoline platforms has been synthesized. This sensor displays high selectivity and sensitive fluorescence enhancement to Cd(2+) in ethanol. Moreover, sensor HL can distinguish Cd(2+) from Zn(2+) via two different sensing mechanisms (photoinduced electron transfer for Cd(2+); internal charge transfer for Zn(2+)). The composition of the complex Cd(2+)/HL or Zn(2+)/L(-) has been found to be 1:1, based on the fluorescence/absorption titration and further confirmed by X-ray crystallography.  相似文献   

10.
A water-soluble fluorescent sensor, 1, based on the "receptor-spacer-fluorophore" [2-(2'-aminophenyl)benzoxazole-amide-2-picolylamine] sensor platform, demonstrates the high sensitivity for Zn(2+) with a 25-fold fluorescence enhancement upon chelation to Zn(2+) and also exhibits high selectivity to Zn(2+) over other metal ions. X-ray crystal structure of Zn(2+) complex reveals that the amide oxygen (O2) cooperates with 2-picolylamine unit (N3, N4) as a receptor bind Zn(2+).  相似文献   

11.
An efficient fluorescent Al(3+) receptor, N-(2-hydroxy-1-naphthalene)-N'-(2-(2-hydroxy-1-naphthalene)amino-ethyl)-ethane-1,2-diamine (L) has been synthesized by the condensation reaction between 2-hydroxy naphthaldehyde and diethylenetriamine. High selectivity and affinity of L towards Al(3+) in ethanol (EtOH) as well as in HEPES buffer at pH 7.4, makes it suitable to detect intracellular Al(3+) with fluorescence microscopy. Metal ions, viz. Li(+), Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+) and Pb(2+) do not interfere. The lowest detection limit for Al(3+) is 3.0 × 10(-7) M and 1.0 × 10(-7) M in EtOH and HEPES buffer respectively.  相似文献   

12.
The synthesis of a difluorofluorescein monocarboxaldehyde platform and its use for preparing ZP8, a new member of the Zinpyr family of neuronal Zn(2+) sensors, are described. By combining an aniline photoinduced electron transfer (PET) switch and an electron-withdrawing fluorescein scaffold, ZP8 displays reduced background fluorescence and improved dynamic range compared to previous ZP probes. The bright sensor undergoes an 11-fold increase in fluorescence intensity upon Zn(2+) complexation (Phi = 0.03-0.35) with high selectivity over cellular concentrations of Ca(2+) and Mg(2+). In addition, sensors in the ZP family have been utilized for optical imaging in biological samples using two-photon microscopy (TPM). The cell-permeable ZP3 probe is capable of identifying natural pools of labile Zn(2+) within the mossy fiber synapses of live hippocampal slices using TPM, establishing the application of this technique for monitoring endogenous Zn(2+) stores.  相似文献   

13.
1-((E)-(2-((2-nitrobenzyl)(2-((E)-(2-hydroxynaphthalen-1-yl)methyleneamino)ethyl)amino)ethylimino)methyl)naphthalen-2-ol (H(2)L), The new compound featuring two naphthalene units was synthesized and characterized. We find that H(2)L has high selectivity and sensitivity to detect Zn(2+) ion over other metal ions such as Na(+), Ag(+), Cd(2+), Co(2+), Cr(3+), Cu(2+), Hg(2+), Mn(2+), Ni(2+), Fe(3+), and the sensitivity is about 10(-7)M. The fluorescent changes of H(2)L upon the addition of cations Zn(2+) and triethylamine is utilized as an AND logic gate at the molecular level, using Zn(2+) and triethylamine as chemical inputs and the fluorescence intensity signal as output.  相似文献   

14.
An efficient sensor for Zn(2+) and Cu(2+) was designed based on different binding modes. The sensor displays ratiometric signals for Zn(2+), due to the Zn(2+)-triggered amide tautomerization; while dual-mode selective behaviors for Cu(2+) result from the deprotonation of the amide tautomer.  相似文献   

15.
The dinuclear Zn(2+) complex [Zn(HSSC)OAc](2)·2DMF (H(2)SSC=salicylaldehyde semicarbazone; HOAc=acetic acid; DMF=N,N-dimethylfomamide) was prepared and structurally characterized by single crystal X-ray. The basic structural unit of the complex is a dinuclear complex [Zn(HSSC)OAc](2) in which the semicarbazone ligand adopts the phenol-imine form. The deprotonated phenol group forms a one-atom bridge between the two zinc centers, and both of the zinc centers are five-coordinated. The local coordination environment of Zn(2+) can be approximately considered as square pyramidal. UV spectral studies show that the H(2)SSC provides strong binding of Zn(2+) in a 1:1 ratio in solution. The conditional binding constant of the complex is lgK(Zn-L)=12.89±0.76 in 0.05M Tris-HCl buffer at pH 7.4. The H(2)SSC exhibits an enhanced fluorescence effect by the addition of Zn(2+), and affords an excellent selectivity for Zn(2+) under physiological conditions.  相似文献   

16.
An efficient water soluble fluorescent Al(3+) receptor, 1-[[(2-furanylmethyl)imino]methyl]-2-naphthol (1-H) was synthesized and characterized by physico-chemical and spectroscopic tools along with single crystal X-ray crystallography. High selectivity and affinity of 1-H towards Al(3+) in HEPES buffer (DMSO/water: 1/100) of pH 7.4 at 25 °C showed it to be suitable for detection of intracellular Al(3+) by fluorescence microscopy. Metal ions, viz. alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)), and transition-metal ions (Ni(2+), Zn(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Cr(3+/6+), Hg(2+)) and Pb(2+), Ag(+) did not interfere. The lowest detection limit for Al(3+) was calculated to be 6.03 × 10(-7) M in 100 mM HEPES buffer (DMSO/water: 1/100). Theoretical calculations have also been included in support of the configuration of the probe-aluminium complex.  相似文献   

17.
Choi KY  Kim DW  Kim CS  Hong CP  Ryu H  Lee YI 《Talanta》1997,44(4):527-534
The formation and dissociation rates of some transition metal(II) and lanthanide(III) complexes of the 1,7,13-triaza-4,10,16-trioxacyclooctadecane N',N',N'-triacetic acid (1) and 1,7,13-triaza-4,10,16-trioxacyclooctadecane-N',N',N'- trimethylacetic acid (2) have been measured by the use of stopped-flow and conventional spectrophotometry. Experimental observations were made at 25.0 +/- 0.1 degrees C and at an ionic strength of 0.10 M KCl. The complexation of Zn(2+) and Cu(2+) ions with 1 and 2 proceeds through the formation of an intermediate complex (MH(3)L(+) *) in which the metal ion is incompletely coordinated. This may then lead to a final product in the rate-determining step. Between pH 4.68 and 5.55, the diprotonated (H(2)L(-)) form is revealed to be a kinetically active species despite its low concentration. The stability constants (log K (MH (3)L (+) *)) and specific base-catalyzed rate constants (k(OH)) of intermediate complexes have been determined from the kinetic data. The dissociation reactions of 1 and 2 complexes of Co(2+), Ni(2+), Zn(2+), Ce(3+), Eu(3+) and Yb(3+) were investigated with Cu(2+) ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed contributions. The buffer and Cu(2+) concentration dependence on the dissociation rate has also been investigated. The metal and ligand effects on the dissociation rate of some transition metal(II) and lanthanide(III) complexes are discussed in terms of the ionic radius of the metal ions, the side-pendant arms and the rigidity of the ligands.  相似文献   

18.
Zheng Q  Chen S  Wang Z  Cui Y 《Talanta》2011,85(1):824-828
A minimal core based fluorophore was introduced as a selectively fluorescent "turn on" sensor for Zn(2+) ions in aqueous solution. Addition of Zn(2+) ions to the fluorophore generates a significant emission through a 1:1 ligand-to-metal complex. The fluorescence titration experiment of the minimal core based fluorophore with various metal ions shows that the pyromellitic diimide derivative also has the advantage of a high selectivity to Zn(2+) ions over other metals such as Ni(2+), or Co(2+), Cu(2+), Fe(3+), Fe(2+). More than 8 fold increase in the intensity of fluorescence was observed for the Zn(2+)-bound fluorophore compared to Zn-free fluorophore. Due to its small molecular size, the fluorophore was cell-permeable and successfully applied to the detection of Zn(2+) in living cells. With its relatively high sensitivity to Zn(2+) in living cells, the synthesized new fluorophore will be very useful in the studies on various biological functions of Zn(2+).  相似文献   

19.
Three new isomorphic coordination polymers of Co(2+), Zn(2+) ions with flexible multicarboxylic acid ligand of the cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)L), [Co(4)L(2)(H(2)O)(8)]·3H(2)O (1), [Zn(4)L(2)(H(2)O)(8)]·3H(2)O (2) and [Co(0.8)Zn(3.2)L(2)(H(2)O)(8)]·3H(2)O (3), have been synthesized under hydrothermal conditions and by means of controlling the pH of the reaction mixtures (with an initial pH of 6.0 for 1, 4.0 for 2, and 5.0 for 3, respectively). In the crystal of 1, two crystallographically different Co(2+) ions (Co1 and Co2) form a negatively-charged coordination polymeric chain, which contains a centrosymmetric, linear, trinuclear Co(2+) cluster (Co(3)L(2)) subunit; another crystallographically independent Co(2+) ion (Co3) coordinated to six water molecules acts as a counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Co(2+) ions in 1 were completely and partially replaced by Zn(2+) ions to give 2 and 3, respectively. Complex 3 shows a novel molecular alloy nature, due to the random distributions of the Co(2+) and Zn(2+) ions. Three isomorphic complexes exhibit distinct thermal decomposition mechanisms. The deprotonated cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid ligands decompose at 420-750 °C to give the residue CoO in 1, ZnO + C in 2 and CoO + ZnO in 3. Complex 1 shows a complicated magnetic behavior with co-existence of antiferromagnetic exchange interactions between neighboring Co(2+) ions as well as strong spin-orbital coupling interactions for each Co(2+) ion; complex 3 exhibits a magnetically isolated high-spin Co(2+) ion behavior with strong spin-orbital coupling interactions.  相似文献   

20.
A method has been developed for determining of heavy metal ions by field-amplified sample injection capillary electrophoresis with contactless conductivity detection. The effects of the 2-N-morpholinoethanesulfonic acid/histidine (MES/His) concentration in the sample matrix, the injection time and organic additives on the enrichment factor were studied. The results showed that MES/His with a low concentration in the sample matrix, an increase of the injection time and the addition of acetonitrile improved the enrichment factor. Four heavy metal ions (Zn2+, Co2+, Cu2+ and Ni2+) were dissolved in deionized water, separated in a 10 mM MES/His running buffer at pH 4.9 and detected by contactless conductivity detection. The detection sensitivity was enhanced by about three orders of magnitude with respect to the non-stacking injection mode. The limits of detection were in the range from 5 nM (Zn2+) to 30 nM (Cu2+). The method has been used to determine heavy metal ions in tap water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号