首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of reverse micelles (RMs) of sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) in n-heptane including two different beta-cyclodextrin (beta-CD) derivatives (hydroxypropyl-beta-CD, hp-beta-CD, and decenyl succinyl-beta-CD, Mod-beta-CD) is reported. Both cyclodextrins can be incorporated into AOT RMs in different zones within the aggregate, while beta-CD cannot. Using UV-vis and induced circular dichroism (ICD) spectroscopy and different achiral molecular probes (some azo dyes, p-nitroaniline and ferrocene), it was possible to determine that Mod-beta-CD is located with its cavity at the oil side of the AOT RM interface, while for hp-beta-CD the cavity is inside the RM water pool. Among the molecular probes used, methyl orange (MO) was the only one which gave the ICD signal when dissolved in the AOT RMs with hp-beta-CD, so a detailed study of MO behavior in homogeneous media was also performed to compare with the microheterogeneous media. The solvatochromic behavior of the dye depends not only on the polarity of the media but also on other specific solvent properties. A Kamlet-Taft analysis shows that the MO absorption spectrum shifts to longer wavelength with an increase in the solvent polarity-polarizability (pi*) and the hydrogen donor ability (alpha) of the medium. MO appears to be almost 3 times more sensitive to the pi* parameter than to the alpha parameter. In addition, from the MO absorption spectral changes with the hp-beta-CD concentration, the association equilibrium constants in pure water (K11W) and inside the RMs (K11RM) were computed. The results show that K11W is almost 10 times larger than the value inside the RMs. The latter can be explained considering that MO resides anchored to the RM interface through hydrogen bond interaction with the hydration bound water. This study shows for the first time that the cyclodextrin chiral cavity is available for a guest in an organic medium such as the RMs; therefore, we have created a potentially powerful nanoreactor with two different confined regions in the same aggregate: the polar core of the RMs and the chiral hydrophobic cavity of cyclodextrin.  相似文献   

2.
Many fluorescent chromophores have been employed to investigate the nature and dynamics of the water confined in reverse micelles (RMs). However, some questions remain as to the location of a probe in a RM and the diameter of the RM at which the physical characteristic of the water inside RMs becomes similar to that of bulk water. In this work, we systematically studied the photophysics of IR125 and C152 in AOT RMs at different w(0) by means of static absorption and fluorescence spectroscopy as well as time-resolved fluorescence spectroscopy. We obtained the absorption maxima, fluorescence emission maxima, fluorescence lifetime, and reorientation time of IR125 and C152 in AOT RMs at corresponding w(0). We found that all obtained photophysical parameters of IR125 and C152 in AOT RMs as a function of w(0) have a distinct changeover point around w(0) = 8, indicating that there is a dramatic change in the nature of the water confined in AOT RMs around w(0) = 8. The observed changeover point around w(0) = 8 is well in agreement with the Satpati's report (ChemPhysChem, 2009, 10, 2966). In addition, we observed that the measured reorientation time of IR125 in AOT RMs increases with the increase of w(0), which is opposite to the trend of change in the measured reorientation time of C152 in AOT RMs with the increase of w(0). We found that IR125 prefers to reside in the water pool of AOT RMs and that C152 prefers to reside in the outer side of the interfacial region or the nonpolar n-heptane phase of AOT RMs. Furthermore, we found that the time-resolved fluorescence anisotropy of IR125 in smaller w(0) AOT RMs primarily measures the reorientation of RMs and the time-resolved fluorescence anisotropy of IR125 in larger w(0) AOT RMs measures the reorientation of IR125 in the water pool confined in RMs. This work demonstrated that IR125 is an excellent probe to study the nature and dynamics of the water confined in AOT RMs.  相似文献   

3.
6-propionyl-2-(N,N-dimethyl)aminonaphtahalene, PRODAN, is widely used as a fluorescent molecular probe because of its significant Stokes shift in polar solvents. It is an aromatic compound with intramolecular charge-transfer states (ICT) that can be particularly useful as a sensor. The nature of the emissive states has not yet been established despite the detailed experimental and theoretical investigations done on this fluorophore. In this work, we performed absorption, steady-state, time-resolved fluorescence (TRES) and time-resolved area normalized emission (TRANES) spectroscopies on the molecular probe PRODAN in the anionic water/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane and the cationic water/benzyl-n-hexadecyl dimethylammonium chloride (BHDC)/benzene reverse micelles (RMs). The experiments were done by varying the surfactant concentrations at a fixed molar ratio (W = [H2O]/[Surfactant]) and changing the water content at a constant surfactant concentration. The results obtained varying the surfactant concentration at W = 0 show a bathochromic shift and an increase in the intensity of the PRODAN emission band due to the PRODAN partition process between the external solvent and the RMs interface. The partition constants, Kp, are quantified from the changes in the PRODAN emission spectra and the steady-state anisotropy () with the surfactant concentration in both RMs. The Kp value is larger in the BHDC than the AOT RMs, probably due to the interaction between the cationic polar head of the surfactant and the aromatic ring of PRODAN. The partition process is confirmed with the TRES experiments, where the data fit to a continuous model, and with the time-resolved area normalized emission spectroscopy (TRANES) spectra, where only one isoemissive point is detected. On the other hand, the emission spectra at W = 10 and 20 show a dual fluorescence with a new band that emerges in the low-energy region of the spectra, a band that was previously assigned to the PRODAN emission from the water pool of RMs. Our studies demonstrate that this band is due to the emission from an ICT state of the molecular probe PRODAN located at the interface of the RMs. These results are also confirmed by the lifetime measurements, the TRES experiments where the results fit to a two-state model, and the time-resolved area normalized emission spectroscopy (TRANES) spectra where three or two isoemissive points are detected in the AOT and BHDC RMs, respectively. In the AOT RMs, Kp values obtained at W = 10 and 20 are almost independent of the water content; the values are higher for the BHDC RMs due to the higher micropolarity of this interface.  相似文献   

4.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

5.
Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li(+), Na(+), K(+), and NH(4)(+) counterions. The anions' antisymmetric stretching bands near 2000 cm(-1) are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K(+) and NH(4)(+) as the counterions. The shifts are largest for low values of w(o) = [water]/[AOT] and approach the bulk value with increasing w(o). The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li(+)>Na(+)>K(+)) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH(4)AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.  相似文献   

6.
The behavior of water entrapped in reverse micelles (RMs) formed by two catanionic ionic liquid‐like surfactants, benzyl‐n‐hexadecyldimethylammonium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT‐BHD) and cetyltrimethylammonium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT‐CTA), was investigated by using dynamic (DLS) and static (SLS) light scattering, FTIR, and 1H NMR spectroscopy techniques. To the best of our knowledge, this is the first report in which AOT‐CTA has been used to create RMs and encapsulate water. DLS and SLS results revealed the formation of RMs in benzene and the interaction of water with the RM interface. From FTIR and 1H NMR spectroscopy data, a difference in the magnitude of the water–catanionic surfactant interaction at the interface is observed. For the AOT‐BHD RMs, a strong water–surfactant interaction can be invoked whereas for AOT‐CTA this interaction seems to be weaker. Consequently, more water molecules interact with the interface in AOT‐BHD RMs with a completely disrupted hydrogen‐bond network, than in AOT‐CTA RMs in which the water structure is partially preserved. We suggest that the benzyl group present in the BHD+ moiety in AOT‐BHD is responsible for the behavior of the catanionic interface in comparison with the interface created in AOT‐CTA. These results show that a simple change in the cationic component in the catanionic surfactant promotes remarkable changes in the RMs interface with interesting consequences, in particular when using the systems as nanoreactors.  相似文献   

7.
The behavior of the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf(2)N]) entrapped in two reverse micelles (RMs) formed in an aromatic solvent as dispersant pseudophase: [bmim][Tf(2)N]/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/chlorobenzene and [bmim][Tf(2)N]/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/chlorobenzene, was investigated using dynamic light scattering (DLS), FT-IR and (1)H NMR spectroscopies. DLS results reveal the formation of RMs containing [bmim][Tf(2)N] as a polar component since the droplet size values increase as the W(s) (W(s) = [[bmim][Tf(2)N]]/[surfactant]) increases. Furthermore, it shows that the RMs consist of discrete spherical and non-interacting droplets of [bmim][Tf(2)N] stabilized by the surfactants. Important differences in the structure of [bmim][Tf(2)N] entrapped inside BHDC RMs, in comparison with the neat IL, are observed from the FT-IR and (1)H NMR measurements. The electrostatic interactions between anions and cations from [bmim][Tf(2)N] and BHDC determine the solvent structure encapsulated inside the nano-droplets. It seems that the IL structure is disrupted due to the electrostatic interaction between the [Tf(2)N](-) and the cationic BHDC polar head (BHD(+)) giving a high ion pair degree between BHD(+) and [Tf(2)N](-) at a low IL content. On the other hand, for the AOT RMs there is no evidence of strong IL-surfactant interaction. The electrostatic interaction between the SO(3)(-) group and the Na(+) counterion in AOT seems to be stronger than the possible [bmim](+)-SO(3)(-) interaction at the interface. Thus, the structure of [bmim][Tf(2)N] encapsulated is not particularly disrupted by the anionic surfactant at all W(s) studied, in contrast to the BHDC RM results. Nevertheless, there is evidence of confinement in the AOT RMs because the [bmim](+)-[Tf(2)N](-) interaction is stronger than in bulk solution. Thus, the IL is more associated upon confinement. Our results reveal that the [bmim][Tf(2)N] structure can be modified in a different manner inside RMs by varying the kind of surfactant used to create the RMs and the IL content (W(s)). These facts can be very important if these media are used as nanoreactors because unique microenvironments can be easily created by simply changing the RM components and W(s).  相似文献   

8.
The interfacial localization and the ion pair formation of the positively charged dye crystal violet (CV) in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles (AOT RMs) were studied by several structural and spectroscopic techniques and by quantum chemical calculations. The size and shape of the AOT RMs in the presence of CV were investigated by small-angle X-ray scattering, showing that CV does not significantly change the RM structure. CV localization as a function of the water to surfactant molar ratio (w(0)) was characterized by H(1) and (13)C NMR, indicating the close proximity of CV to the sulfosuccinate group of AOT at small and large w(0) values. These results were confirmed by calculation of magnetic shielding constants using the gauge-independent atomic orbital method with the HF/6-31G(d) basis set. Two different types of ion pairs between AOT and CV, i.e., contact ion pair (CIPs) and solvent-separated ion pair (SSIPs), were characterized by UV-vis spectroscopy and quantum chemical calculations using the semiempirical ZINDO-CI method. In nonpolar isotropic solvents CIPs are formed with an association constant (K(ASSOC)) of 2 x 10(4) mol(-1) L in isooctane and 750 mol(-1) L in chloroform. In AOT RMs at low w(0), CV-AOT CIPs are also formed. By increasing w(0), there is a sharp decrease in the CIP association free energy, and SSIPs are formed. (CV(+))(H(2)O)(AOT(-)) SSIPs are stable in the AOT RM up to the largest w(0) tested (w(0) = 33).  相似文献   

9.
《Analytical letters》2012,45(12):1017-1029
Abstract

The determination of phenols is important in many areas, such as the characterization of hazardous waste products and the analysis of coal gasification by-products and the analysis of coal gasification by-product waters. Ultraviolet spectrometric phenolate anion measurement is a simple and reliable technique for the selective determination of phenol concentrations in water. For most common phenols, the difference in absorptivity at 291 nm caused by raising the pH from 7 to 12 and converting unionized phenols to phenolate anions provides an accurate measure of phenol concentrations despite variable sample compositions. This technique may be applied directly to aqueous samples or to other samples after extraction of phenols with a solvent.  相似文献   

10.
Solvated electrons have been generated in reverse micelles (RMs) through photodetachment of ferrocyanide (Fe(CN)(6)(4-)) in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) RMs. We have measured both bleach recovery of the parent ferrocyanide CN stretch in the infrared and the decay of the solvated electron absorption at 800 nm. The bleach recovery has been fit to a diffusion model for the geminate recombination process. The fit parameters suggest a narrowing of the spatial distribution of ejected electrons due to confinement in the RMs when compared to bulk water. The diffusion coefficient of the solvated electron does not appear to be significantly affected by RM confinement. The decay of the solvated electron absorption exhibits an additional decay component that is not observed in bulk water and is smaller for larger RMs. No corresponding additional component is seen in the parent ferrocyanide IR bleach recovery, which supports our interpretation that the confinement-induced new decay process in RMs is due to electrons reacting with AOT headgroups.  相似文献   

11.
The behavior of C343, a common molecular probe utilized in solvation dynamics experiments, was studied in homogeneous media and in aqueous and nonaqueous reverse micelles (RMs). In homogeneous media, the Kamlet and Taft solvatochromic comparison method quantified solute-solvent interactions from the absorption and emission bands showing that the solvatochromic behavior of the dye depends not only on the polarity of the medium but also on the hydrogen-bonding properties of the solvent. Specifically, in the ground state the molecule displays a bathochromic shift with the polarity polarizability (pi) and the H-bond acceptor (beta) ability of the solvents and a hypsochromic shift with the hydrogen donor ability (alpha) of the media. The carboxylic acid group causes C343 to display greater sensitivity to the beta than to the pi polarity parameter; this sensitivity increases in the excited state, while the dependence on alpha vanishes. This demonstrates that C343 forms a stable H-bond complex with solvents with high H-bond acceptor ability (high beta) and low H-bond donor character (low alpha). Spectroscopy in nonpolar solvents reveals J-aggregate formation. With information from the Kamlet-Taft analysis, C343 was used to explore RMs composed of water or polar solvents/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/isooctane using absorption, emission, and time-resolved spectroscopies. Sequestered polar solvents included ethylene glycol (EG), formamide (FA), N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). Dissolved in the AOT RM systems at low concentration, C343 exists as a monomer, and when introduced to the RM samples in its protonated form, C343 remains protonated driving it to reside in the interface rather than the water pool. The solvathochromic behavior of the dye depends the specific polar solvent encapsulated in the RMs, revealing different types of interactions between the solvents and the surfactant. EG and water H-bond with the AOT sulfonate group destroying their bulk H-bonded structures. While water remains well segregated from the nonpolar regions, EG appears to penetrate into the oil side of the interface. In aqueous AOT RMs, C343 interacts with neither the sulfonate group nor the water, perhaps because of intramolecular H-bonding in the dye. DMF and DMA interact primarily through dipole-dipole forces, and the strong interactions with AOT sodium counterions destroy their bulk structure. FA also interacts with the Na+ counterions but retains its H-bond network present in bulk solvent. Surprisingly, FA appears to be the only polar solvent other than water forming a "polar-solvent pool" with macroscopic properties similar to the bulk.  相似文献   

12.
Intramolecularly OHO[double bond, length as m-dash]C hydrogen bonded phenols, 2-HO-C6H2-3,5-(t-Bu)2-CONH-t-Bu (1-OH), 2-HO-C6H2-5-t-Bu-1,3-(CONH-t-Bu)2 (2-OH) and 2-HO-C6H2-3,5-(t-Bu)2-NHCO-t-Bu (4-OH), were synthesized and their phenolate anions were prepared as tetraethylammonium salts (-1O-(NEt4+), 2-O-(NEt4+) and 4-O-(NEt4+)) with intramolecular NHO(oxyanion) hydrogen bonds. 4-HO-C(6)H(2)-3,5-t-Bu(2)-CONH-t-Bu (3-OH) and its phenolate anion, 3-O-(NEt4+), were synthesized as non-hydrogen bonded references. The presence of intramolecular hydrogen bonds was established through the crystallographic analysis and/or (1)H NMR spectroscopic results. Intramolecular NHO(phenol) hydrogen bonds shift the pK(a) of the phenol to a more acidic value. The results of cyclic voltammetry show that the intramolecular OH...O=C hydrogen bond negatively shifts the oxidation potential of the phenol. In contrast, the intramolecular NHO(oxyanion) hydrogen bond positively shifts the oxidation potential of the phenolate anion, preventing oxidation. These contributions of the hydrogen bond to the pKa value and the oxidation potentials probably play an important role in the formation of a tyrosyl radical in photosystem II.  相似文献   

13.
Reverse micelles (RMs) are very good nanoreactors because they can create a unique microenvironment for carrying out a variety of chemical and biochemical reactions. The aim of the present work is to determine the influence of different RM interfaces on the hydrolysis of 2‐naphthyl acetate (2‐NA) by α‐chymotrypsin (α‐CT). The reaction was studied in water/benzyl‐n‐hexadecyldimethylammonium chloride (BHDC)/benzene RMs and, its efficiency compared with that observed in pure water and in sodium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT) RMs. Thus, the hydrolysis rates of 2‐NA catalyzed by α‐CT were determined by spectroscopic measurements. In addition, the method used allows the joint evaluation of the substrate partition constant Kp between the organic and the micellar pseudophase and the kinetic parameters: catalytic rate constant kcat, and the Michaelis constant KM of the enzymatic reaction. The effect of the surfactant concentration on the kinetics parameters was determined at constant W0=[H2O]/[surfactant], and the variation of W0 with surfactant constant concentration was investigated. The results show that the classical Michaelis–Menten mechanism is valid for α‐CT in all of the RMs systems studied and that the reaction takes place at both RM interfaces. Moreover, the catalytic efficiency values kcat/KM obtained in the RMs systems are higher than that reported in water. Furthermore, there is a remarkable increase in α‐CT efficiency in the cationic RMs in comparison with the anionic system, presumably due to the unique water properties found in these confined media. The results show that in cationic RMs the hydrogen‐bond donor capacity of water is enhanced due to its interaction with the cationic interface. Hence, entrapped water can be converted into “super‐water” for the enzymatic reaction studied in this work.  相似文献   

14.
The 3,3', 4',7 tetrahydroxiflavone (fisetin) is a natural therapeutically active and fluorescent polyhydroxyflavone, with important spectroscopic and biological behavior. Fisetin shows dual emission, with a normal band (N) from the S1 --> S0 transition and the one generated in the excited state (phototautomer; PT) from the intramolecular proton transfer (ESIPT) process. The influence of different interfaces on the ESIPT process of fisetin was investigated in reverse micelles media (RMs) made of the anionic sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT) and cationic benzyl n-hexadecyl dimethylammonium chloride (BHDC) surfactants, in benzene. The studies were carried out by absorption, emission spectroscopy, steady-state anisotropy and time-resolved fluorescence measurements. Fisetin behavior was also investigated in homogeneous media with special emphasis in water and benzene, which are the polar core and the organic pseudofase in the RMs, respectively. In addition, the effect of concentration in benzene and the variation of the pH in water were studied. Fluorescence lifetime measurements show that in water the ESIPT process is independent on the concentration, while in benzene it was possible to detect fluorescent aggregate species (Nas) formed in the ground state. The effect of the pH in water allowed us to identify the anionic fisetin (A-) emission. The studies in RMs show that fisetin interacts specifically with the head of the surfactants, which always results in diminishing the emission of the PT. Also the formation of A- is detected particularly at W0 > 0. Appreciable high anisotropy values are obtained in RMs, as compared with those in fluid homogeneous media, which are independent of the water content confirming that fisetin molecules are anchored in the anionic as well as in the cationic interfaces.  相似文献   

15.
Static and ultrafast infrared spectroscopy have been used to measure absorption spectra and vibrational energy relaxation (VER) times for the antisymmetric stretching vibrational band of azide, N(3)(-), in formamide-containing reverse micelles (RMs). RMs were formed in n-heptane using the surfactant AOT, sodium bis(2-ethylhexyl) sulfosuccinate. The VER times were found to be significantly longer than in bulk formamide. The VER times became longer as the molar ratio of formamide to AOT, omega(F), was decreased. Decreasing omega(F) also resulted in substantial blue shifts of the azide static absorption band compared to the frequency in bulk formamide. The omega(F) dependent studies are consistent with expected size trends, where a larger RM results in more bulklike polar solvent and faster VER rates. These results are in contrast to aqueous AOT RMs where VER times were indistinguishable from those in the bulk and the static spectral shifts were much smaller. The differences between the static and dynamic behavior in aqueous and formamide RMs are related to differences in structural changes upon confinement in RMs.  相似文献   

16.
This paper reports the size of reverse micelles (RMs) in AOT/octane/H(2)O and CTAB/hexanol/H(2)O microemulsions using magnetic resonance (MR) pulsed field gradient (PFG) measurements of diffusion. Diffusion data were measured using the pulsed gradient stimulated echo (PGSTE) experiment for surfactant molecules residing in the RM interface. Inverse Laplace transformation of these data generated diffusion coefficients for the RMs, which were converted into hydrodynamic radii using the Stokes-Einstein relation. This technique is complementary to those previously used to size RMs, such as dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), but also offers several advantages, which are discussed. RM sizes, determined using the PGSTE method, in the AOT (sodium bis(2-ethylhexyl) sulfosuccinate) and CTAB (cetyltrimethylammonium bromide) microemulsions were compared with previous DLS and SAXS data, showing good agreement. Methods for determining number distributions from the PGSTE data, through the use of scaling factors, were investigated.  相似文献   

17.
Summary Ten new Agricultural/Food Reference Materials (RMs) were characterized with respect to their elemental compositions via an interlaboratory characterization (certification) campaign. Chemical analyses were conducted in 73 cooperating laboratories applying 13 major classes of independently different analytical methods. A total of 213 best estimate values, and 65 informational values were obtained for Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W and Zn in the following RMs: Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438).  相似文献   

18.
The reaction of the strong monophosphazene base with the weakly acidic phenol leads to the formation of a phenol–phenolate anion with a moderately strong hydrogen bond. Application of the more powerful tetraphosphazene base (Schwesinger base) renders the isolation of the corresponding salt with a free phenolate anion possible. This compound represents the first species featuring the free phenolate anion [H5C6-O]. The deprotonation of phenol derivatives with tetraphosphazene bases represents a great way for the clean preparation of salts featuring free phenolate anions and in addition allows the selective syntheses of hydrogen bonded phenol-phenolate salts. This work presents a phosphazenium phenolate salt with a redox potential of −0.72 V and its capability for the selective activation of the chemically inert greenhouse gas SF6. The performed two-electron reduction of SF6 leads to phosphazenium pentafluorosulfanide ([SF5]) and fluoride salts.  相似文献   

19.
N-butylimidazolium functionalized strongly basic anion exchange resin with Cl(-) anion (MCl) was prepared by anchoring N-butylimidazole onto chloromethylated macroporous styrene-divinylbenzene (St-DVB) copolymer. The adsorption performances of phenol on MCl were studied using the batch technique at acidic and alkaline pH. The studies showed that phenol can be effectively removed at both acidic and alkaline pH. The maximum adsorption was achieved at about pH 11. The maximum adsorption capacities of phenol on MCl at pH 6.6 and 11.2 were 80.2 and 92.9 mg/g, respectively. The adsorption mechanism was mainly molecular adsorption at acidic pH and anion exchange at alkaline pH. The adsorption of phenol was hindered by the presence of Cl(-) and SO(4)(2-) at alkaline pH due to the competitive anion exchange reaction. The adsorption of molecular phenol species on MCl at acidic pH was exothermic, and the anion exchange of phenolate species by MCl at alkaline pH was endothermic. Desorption of phenol from loaded adsorbent was achieved by using 0.5 mol/L NaOH and 0.5 mol/L NaCl mixed solution. MCl can simultaneously remove phenol and Cr(VI) from their mixtures, which would be of practical value in actual industrial wastewater treatment.  相似文献   

20.
研究了反相胶束体系中敏化Tb^3^+的离子荧光。在AOT/C6H12H2O反相胶束溶液中[AOT: 琥珀酸二(2-乙基己基)酯磺酸钠]发生了非常有效的从茶碱的三重态到Tb^3^+的4f能层的能量转移, 并敏化稀土离子Tb^3^+产生离子荧光。而在阳离子表面活性剂CTAB形成的反相胶束体系中, 只能观察到较弱的Tb^3^+的离子荧光。表明在AOT反相胶束中Tb^3^+是键合在磺酸头基上, 有利于能量转移过程, 显著增强Tb^3^+的离子荧光。通过发光光谱和寿命测量, 详细讨论了AOT浓度和水泡大小(W值)等对敏化离子荧光的影响, 表明与Tb^3^+离子水合的水分子的高频OH振动猝灭Tb^3^+的离子发光, 该猝灭过程属静态猝灭。在较低的AOT浓度和较小的W值下, 可观察到较强的Tb^3^+离子荧光, 并建立了AOT反相胶束中五种嘌呤类化合物的分析方法, 检出限在8.0×10^-^9~8.0×10^-^7mol.dm^-^3之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号