首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report investigations of adsorption of N(2) and O(2) molecules on silver cluster cations. We have first revisited structures of small silver clusters based on first-principles calculations within the framework of density functional theory with hybrid functional. The 2D to 3D transition for the neutral clusters occurs from n = 6 to 7 and for cations, in agreement with experiments, from n = 4 to 5. With the refined structures, adsorption energies of N(2) and O(2) molecules have been calculated. We have identified characteristic drops in the adsorption energies of N(2) that further link our calculations and experiments, and confirm the reported 2D-3D transition for cations. We have found that perturbations caused by physisorbed molecules are small enough that the structures of most Ag clusters remain unchanged, even though physisorption stabilizes the 3D Ag(7)(+) structure slightly more than the 2D counterpart. Results for pure O(2) adsorption indicate that charge transfer from Ag(n)(+) to O(2) occurs when n > 3. Below that size oxygen essentially physisorbes such as nitrogen to the cluster. We interpret the experimentally observed mutually cooperative co-adsorption of oxygen and nitrogen using results from density functional theory with generalized gradient approximations. The key to the enhancement is N(2)-induced increase in charge transfer from Ag(n)(+) cations to O(2).  相似文献   

2.
The formation process of binary clusters has been studied using synchrotron based core level photoelectron spectroscopy. Free neutral krypton clusters have been produced by adiabatic expansion and doped with chloromethane molecules using the pickup technique. The comparison between the integrated intensities, linewidths, and level shifts of the cluster features of pure krypton and of chloromethane-krypton clusters has been used to obtain information about the cluster geometry. We have shown that most of the chloromethane molecules remain on the surface of the clusters.  相似文献   

3.
《Chemical physics letters》1986,131(6):451-456
The geometries and relative energies of small clusters of water molecules, (H2O)n with 4 ⩽ n ⩽ 8, are reported. For each value of n we have considered the conformations corresponding to the lowest-energy minimum and those in nearby relative minima. Thus we report on six tetramers, four pentamers, six hexanlers, four heptamers, and eigth octamers. The geometrical conformations have been obtained using the Metropolis Monte Carlo method as a minimization technique, where the interaction energy is computed with the MCY potential plus three- and four-body corrections previously discussed. All the reported structures for a given cluster size are found to be close in energy. For the lowest conformation the geometry was optimized with ab initio SCF computations using energy gradients. Our results are compared with previous theoretical studies. We discuss the convergence of the interaction potential for liquid water when expressed in terms of a many-body series expansion.  相似文献   

4.
Molecular dynamics simulations were used to study the evaporation from water clusters containing either Cl(-), H(2)PO(4)(-), Na(+) or NH(4)(+) ions. The simulations ranged between 10 and 500 ns, and were performed in vacuum starting at 275 K. A number of different models were used including polarizable models. The clusters contain 216 or 512 molecules, 0, 4 or 8 of which were ions. The ions with hydrogen bonding properties do not affect evaporation, even though the phosphate ions have a pronounced ion-ion structure and tend to be inside the cluster whereas ammonium shows little ion-ion structure and has a distribution within the cluster similar to that of the water molecules. Since the individual ion-water interactions are much stronger in the case of Na(+)-water and Cl(-)-water clusters, evaporation is somewhat slower for clusters containing these ions. It seems therefore that the main determinant of the evaporation rate in ion-water clusters is the strength of the interaction. Fission of droplets that contain more ions than allowed according to the Rayleigh limit seems to occur more rapidly in clusters containing ammonium and sodium ions.  相似文献   

5.
Water clusters (H2On and (D2On (n相似文献   

6.
We report molecular dynamics (MD) simulations on the adsorption of water in attractive and repulsive slit pores, where the slit and a bulk region are in contact with each other. Water structure, surface force and adsorption behavior are investigated as a function of the overall density in the bulk region. The gas–liquid transition in both types of pores occurs at similar densities of the bulk region.  相似文献   

7.
The method of molecular dynamics is used to study the adsorption of from one to six ammonia molecules by water clusters composed of 50 molecules. The adsorption of NH3 molecules markedly increases the IR absorption spectrum intensity, substantially decreases emission power in the frequency range of 0 ≤ ω ≤ 3500 cm?1, and transforms a continuous reflectance spectrum into a banded one. A rough surface formed by adsorbed ammonia molecules reduces the absorption coefficient and refractive index of the system of water-ammonia clusters in the entire frequency range. Adsorption of ammonia molecules by water clusters greatly diminishes the number of electrons that are active with respect to electromagnetic radiation.  相似文献   

8.
9.
The experimental adsorption isotherms of water and nitrogen vapors on graphitized carbonaceous adsorbents with large pore size prepared from ultradispersive technical carbon black have been compared with those on the surface of non-porous graphitized carbon black. The saturation value of water vapor adsorption has been shown to be proportional to the concentration of primary adsorption centers. At low concentrations of these centers the saturation value corresponds to the formation of fractions of a dense monolayer on the surface. The maximum size of clusters of water molecules on a carbonaceous adsorbent surface has been estimated.Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 54–56, January, 1993.  相似文献   

10.
To investigate the proton/deuteron geometrical isotope effect of positively and negatively charged water complexes, H5O2+ and H3O2-, we have carried out accurate ab initio path integral simulations considering the electron correlation effect. It has been found that the isotope effect on the hydrogen bond is different between these two species in that the oxygen separation becomes shorter in H5O2+ while longer in H3O2- by deuteron substitution. This behavior is ascribed to the change in the quantum effect of hydrogen bonds whether the shared hydrogen is on a single or double well potential surface.  相似文献   

11.
The electron impact ionization of hydrogen-bonded clusters of water and ammonia results in the formation of stable doubly charged ions only when the cluster size exceeds a critical value. The observed minimum cluster size for water is (H2O)35H22+ and for ammonia is (NH3)51H2+. From a knowledge of the relative hydrogen-bond strenghts, it has been possible to account for the size difference between these ions and to qualitatively discuss the locations of the positive charges within each cluster.  相似文献   

12.
A family of cationic polyelectrolytes possessing defined chain lengths, narrow chain length distributions, uniform charge density, but substituents of different hydrophilicity at the quaternary ammonium group served as model compounds for adsorption studies. These studies quantitatively revealed that polymer characteristics and electrostatic parameters affect the adsorption behavior on oppositely charged porous column materials. The presence of electrostatic exclusion, in addition to size exclusion, was proved comparing molecular, electrostatic and geometrical parameters. The dominance of electrostatic effects could be concluded evaluating the relation between molecular and electrostatic dimensions. The results provide a contribution how to estimate the threshold for electrostatic exclusion from pores as a function of dimensions and experimental conditions.  相似文献   

13.
14.
The stability and decay channels of multiply charged anionic metal clusters are studied using the uniform jellium background model and the local density approximation, with self-interaction corrections when necessary. Shell effects are introduced using an adaptation of the nuclear Strutinsky method. Singly charged anions are stable for all sizes, but multiply charged negative ions are stable against spontaneous electron decay only above certain critical sizes. Below the border of stability, the anions are metastable against electron tunneling through a Coulombic barrier. Lifetimes for such decay processes are estimated. Fission channels may compete with the electron autodetachment and are studied for the case of doubly charged anions.  相似文献   

15.
Using the gasaggregation technique it is possible to generate metal clusters in narrow size distributions and to vary their mean size by adjusting the cell parameters. The high intensity of this source allows to detect besides singly charged clusters also multiply charged ones. Ag n 2+ and Ag n 3+ are observed forn≧9 andn≧31, respectively; i.e. at values well below the critical sizes reported for spheres.  相似文献   

16.
Fragmentation of doubly charged argon clusters is reported. Neutral argon clusters are excited with monochromatized synchrotron radiation in the energy regime of the argonL 3/L 2 absorption edges (240–260 eV) leading predominantly to cluster dication formation. All charged particles are detected in a photoelectron-photoion-photoion-concidence (PEPIPICO) experiment. Symmetric and asymmetric charge separation reactions (Coulomb explosion) are identified for clusters below the critical size of stable dication formation. The peak shapes of the coincidence signals are investigated as a function of neutral cluster size. Characteristic changes in peak shape are observed which are used to derive fragmentation mechanisms involving sequential evaporation of neutrals before and after charge separation. The spectra indicate in accordance with low kinetic energy releases occurring in charge separation of large dissociative cluster dications (Ar n 2+ , withn>50) that due to large charge separation distances the momenta of both singly charged fragments are not any more directed into opposite direction, as it is typical for Coulomb explosion. The results are compared to collision induced fragmentation of mass selected argon cluster dications as well as photon stimulated desorption spectra of condensed argon.  相似文献   

17.
The Density Functional Formalism is used to calculate the minimum number of atoms (N c ) a multiply charged jellium-like spherical cluster must contain to be stable against coulomb explosion into two smaller fragments. In the case of alkaline clusters, which are systems for which the jellium model can be applied, we findN c equal to 31 and 23 for the explosion of Na N 2+ and Cs N 2+ respectively, in good agreement with the experimental value ofN c = 18 for Cs N 2+ . Calculated critical numbers for triply and tetracharged Cs clusters are 108 and 323 respectively. In addition the model predicts that the most favourable fragmentation channel is the ejection of a singly charged monomer.  相似文献   

18.
The stabilized jellium model is a simple modification of the jellium model, which more realistically describes simple metals of high density, such as Al, Ga, Pb, etc. We analyzed the fragmentation processes of charged spherical Al clusters in the framework of the stabilized jellium model. Kohn-Sham calculations of the parents and daughters, using the local density approximation, have been made. We evaluated the dissociation energies of Al, Al, and Al, with N=1-30 atoms, in all possible decay channels. We discuss the most favorable decay channels, which are ruled by the shell structure (magic numbers of valence electrons in the parents and the daughters) oscillations around an average trend given by a liquid drop model. We compare our calculations with others and with the available experimental data. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Adsorption of water vapour from humid air by selected carbon adsorbents   总被引:2,自引:0,他引:2  
The water uptake by carbon molecular sieves (CMS) and graphitized carbons, all of which are used to determine volatile organic compounds in air, was investigated using a direct experimental approach. CMS, e.g. Carboxen 1002, Carboxen 1003 and Anasorb CMS adsorb substantial amounts of water, in the range 400 to 450 mg per gram of adsorbent. Graphitized carbons, e.g. Carbrogaph 5TD and Carbopack X show low water trapping, less than 30 mg g(-1) and Carbopack Y as little as 5 mg g(-1) or less. The water sorption capacity for graphitized carbons is strongly dependent on the relative humidity (RH). The change of RH from 95 to 90% decreases the amount of adsorbed water by more than a factor of 2. Two different water adsorption mechanisms are operative: adsorption on polar centers and micropore volume filling. For graphitized carbons and CMS at low RH, adsorption on polar centers is involved. For CMS, once the threshold value of relative humidity (RHth) is surpassed, micropore volume filling becomes predominant. RHth is 44 +/- 3 and 42 +/- 3% for Carboxen 1002 and 1003, respectively, and 32 +/- 3% for Anasorb CMS. The CMS mass in the trap was found not to affect the mass of retained water under condition of incomplete saturation of adsorbent bed with water. Thus, the restrictions commonly imposed on the CMS mass are not necessary. The dry purging technique is suggested to remove adsorbed water. Carbograph 5TD and Carbopack X require only a few hundred ml of dry air to remove adsorbed water entirely. Water can also be purged out from CMS; however, much larger volumes of dry air are needed.  相似文献   

20.
Molecular dynamic simulation is used to investigate the adsorption mechanism of water molecules surrounding Au nanoparticles with different sizes. Our results show that the adsorption mechanism of the water molecules in the first water shell will be influenced by the size of the Au nanoparticle. For the larger Au nanoparticles, the hydrogen bonding of water molecules adsorbed on the surface of the Au nanoparticles are arranged in a two-dimensional structure, while those adsorbed on the edge of the surface of the Au nanoparticles are arranged in a three-dimensional structure. However, in the case of the smallest Au nanoparticle, the hydrogen bonding of the water molecules on the first adsorbed layer are arranged only in a three-dimensional structure. The arrangement of the water molecules in the first water shell can be determined by orientation order parameter. The water molecules that adsorb on the larger Au nanoparticles tend to arrange in an irregular arrangement, while those adsorbed on the smallest Au nanoparticle tend to arrange a regular arrangement. Interestingly, the water molecules adsorbed on the smallest nanoparticle are arranged in a bulklike structure in the first shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号