首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
石墨是准二维半金属材料,然而在通常细晶粒、无取向的石墨中并没有发现很大的磁电阻效应.在高度取向的石墨中发现了巨大的正磁电阻效应,在8.15 T的外磁场中,4.2,300 K温度下的磁电阻分别高达85300%和4950%.生产这一巨磁电阻效应的机制除正常磁电阻效应外,可能源于磁场诱导的类金属-绝缘体的转变 关键词: 磁电阻效应 石墨  相似文献   

2.
用溶胶-凝胶法并经过1450℃后处理而制备出名义组分为La2/3(Ca1-xMgx)1/3MnO3 (0≤x≤60%)多晶样品.磁化测量表明,除磁转变温度因Mg掺杂而稍有降低外,磁性质整体上和不含Mg样品无本质上的差别.未加磁场下阻温关系测量表明,即使Mg含量高达60%,实验上仍观察到绝缘体到金属的转变.特别有意义的结果是,适当的Mg掺杂可明显提高转变温度附近的磁电阻效应,例如,在Mg掺杂量为30~40%的样品中,1T磁场下观察到的磁电阻甚至比不含Mg样品在5T磁场下得到的值还要大.  相似文献   

3.
研究了半掺杂相分离锰氧化物Eu0.5Sr0.5MnO3样品的结构和电磁输运特性.在半掺杂情况下,该样品呈O′型正交结构,表明样品存在典型的Jahn-Teller畸变;在75 K附近样品的顺磁/反铁磁背景中开始出现铁磁相,在更低的温度42 K,4000 A/m磁场下M-T的场冷曲线和零场冷曲线出现明显分岔,样品的交流磁化率实部随温度的变化曲线中也在42 K观察到尖峰的出现,表现出团簇玻璃行为.在无外加磁场下该样品在整个测量温区均呈现绝缘体型导电行为,而在外加磁场1.6×106 A/m下出现磁场诱导的绝缘体-金属 (I-M)转变,其电输运特性符合可变程跳跃模型;研究表明,半掺杂Eu0.5Sr0.5MnO3样品的基态存在多种复杂而丰富的磁相互作用之间的竞争机理,其研究将为强关联锰氧化物体系物理机理的理解提供丰富的实验资料.  相似文献   

4.
采用电沉积的方法在多孔氧化铝模板中合成了直径为30 nm且沿着[0112]方向生长的单晶铋纳米线,测量了纳米线电导随着温度78~320 K变化的关系曲线. 结果发现,其半金属半导体转变的温度为230 K,且纳米线的电导有很强的温度依赖性.  相似文献   

5.
张迷  陈元平  张再兰  欧阳滔  钟建新 《物理学报》2011,60(12):127204-127204
采用格林函数方法研究了堆叠石墨片对锯齿型石墨纳米带电子输运性质的影响,计算了两种不同堆叠方式下锯齿型石墨纳米带的电导.研究发现,由于堆叠石墨片与石墨纳米带的耦合作用,锯齿型石墨纳米带的电导谱出现了电导谷.在远离费米能处,两种堆叠方式下的电导谷位置相近甚至重合;而在费米能附近,两种堆叠方式下的电导谷存在差异.此外,讨论了堆叠石墨片的几何尺寸对锯齿型石墨纳米带电子输运的影响.结果显示,随石墨片几何尺寸的增大,锯齿型石墨纳米带在两种堆叠方式下远离费米能处的电导谷逐渐向费米能方向移动,同时其费米能附近的电导谷在两种堆叠方式下的差异随石墨片尺寸的增大变得更为明显.研究结果表明,堆叠石墨片能够有效地调制锯齿型石墨纳米带的电子输运性质.  相似文献   

6.
外尔半金属是继石墨烯以及拓扑绝缘体之后的又一个研究热点。相比于后两者,外尔半金 属独特的三维无能隙线性色散能带结构使得它有很多奇特的性质,如:手性反常、手性磁效应、 反弱局域化、手性朗道能级和负磁阻效应等。实际样品中无序总是不可避免的,所以考虑无序对 体系的影响是很有必要的。我们回顾了无序下第一类以及第二类外尔半金属的相变特性,并获得 了完整的相图,这些无序诱导的相变丰富了拓扑安德森绝缘体和安德森金属绝缘体相变的物理内 涵。我们同样回顾了长程短程无序影响下的第一类外尔半金属体系的输运,发现了一种不能采用 玻尔兹曼输运方程来描述的输运过程。我们介绍Imbert-Fedorov 位移这一光学中的效应在外尔 半金属中的实现,这为更好地应用外尔半金属提供了更多的可能性,随后采用波包散射,我们解 释了外尔半金属中的超高载流子迁移率问题的原因,最后我们给出一个简要的总结。  相似文献   

7.
拓扑物态包括拓扑绝缘体、拓扑半金属以及拓扑超导体.拓扑物态奇异的能带结构以及受拓扑保护的新奇表面态,使其具有了独特的输运性质.拓扑半金属作为物质的一种三维拓扑态具有无能隙的准粒子激发,根据导带和价带的接触类型分为外尔半金属、狄拉克半金属和节线半金属.本文以拓扑半金属为主回顾了在磁场下拓扑物态中量子输运的最新工作,在不同...  相似文献   

8.
伊长江  王乐  冯子力  杨萌  闫大禹  王翠香  石友国 《物理学报》2018,67(12):128102-128102
拓扑半金属已经成为凝聚态物理研究的一个热点领域,这类材料的单晶生长是研究其物理性质的基础.目前,对于拓扑材料的研究已经形成了以理论计算为指引,对潜在的拓扑材料进行单晶制备,并结合物性测量对理论预言加以验证的科研合作方式.在这种科研团队合作中,单晶生长起衔接作用.本文介绍了近年来拓扑半金属材料单晶生长方法,涵盖了拓扑Dirac半金属、Weyl半金属、Node-Line半金属以及其他打破常规分类的拓扑绝缘体及拓扑半金属材料等,并针对各个材料,详细总结了其生长方法.  相似文献   

9.
研究了半掺杂锰氧化物Sm0.5Ca0.5MnO3体系的结构、输运和磁特性,结果表明,在半掺杂情况下,该体系呈现O′类正交结构,表明体系存在典型的Jahn-Teller效应畸变;输运结果在整个测量温区均呈现半导体导电行为,没有出现金属-绝缘体(M-I)转变和CMR效应;电荷有序转变发生在T=270K左右,反铁磁转变温度出现在200K附近,且表现出典型的再入型自旋玻璃(spin-glass)行为,自旋玻璃转变温度TSG在4 关键词: 自旋玻璃 电荷有序 负磁化现象 多相竞争  相似文献   

10.
天然多晶金刚石极其稀少,而人造大颗粒单晶金刚石的制备又很困难.这样,研制人造多晶金刚石就成为人们研制大颗粒人造金刚石的重要途径.与制备人造大颗粒单晶金刚石比较,人造多晶金刚石的制作工艺简单,易于成型,成本低.目前,在超高压、高温下研制人造多晶金刚石有两种方法:一种是由石墨加金属触媒合成出金刚石微粉,再由金刚石微粉加金属粘结剂烧结成多晶金刚石块.这种方法称为烧结法;另一种是石墨在触媒金属的作用下,一次快速生长成多晶金刚石,这种方法称为生长法.从表面上看生长法不需要经过两次高温、高压过程.但由于需要完成由石墨到金刚…  相似文献   

11.
M?ssbauer spectra obtained after implantation of 57Fe into highly oriented pyrolytic graphite (HOPG) show a combined magnetic and quadrupole interaction with a magnetic hyperfine field Bhf = 32.6 T at 14 K. Though magnetic effects in nominally diamagnetic HOPG have been reported recently, no experiment has previously shown the existence of magnetism at the atomic scale. The results suggest that magnetic ordering occurs by coupling of the Fe magnetic moment to structural and/or electronic magnetic defects induced by the probe atoms' implantation damage.  相似文献   

12.
Low-temperature nuclear alignment of160Tb ions implanted in Highly Oriented Pyrolytic Graphite has been observed by the anisotropic intensity distribution of γ-rays. The data can be understood with an effective spin Hamiltonian containing combined magnetic and electric hyperfine interactions. Values deduced for the hyperfine parameters are A/k=(101±7) mK for the magnetic interaction, and P/k=(−3.7±0.9) mK for the nuclear electric quadrupole interaction, under the assumption that B=0 and Δ=0. Measurements in magnetic fields of 0.2 and 1.0 T directed along the graphite c-axis showed thermal saturation due to the strongly reduced heat conductivity of HOPG in the presence of a magnetic field.  相似文献   

13.
We report the extraordinarily large positive magnetoresistances (MR, 69400% at 4.5K under a magnetic field of 8.15 T), de Hass-van Alphen oscillations effect at 10 K and the semimetal-Jnsulator-like transition in a wide range of temperature in highly oriented pyrolitic graphite (HOPG). Besides a dominating ordinary MR (OMR) mechanism in the free-electron mode, it is realized from qualitative analysis that the Coulomb interacting quasiparticles within graphite layers play some roles. However it is difficult to associate the transition with the simple OMR theory. In order to investigate the possible origins of the transition, further analysis is carried out. It is revealed that the magnetic-field-induced behaviour is responsible for the semimetal-insulator-like transitions in HOPG.  相似文献   

14.
Scanning tunneling spectroscopy (STS) measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra associated with Landau quantization of the quasi-two-dimensional electrons and holes. A comparison with the calculated local density of states at the surface layers allows us to identify Kish graphite as bulk graphite and HOPG as graphite with a finite thickness of 40 layers. This explains the qualitative difference between the two graphites reported in the recent transport measurements which suggested the quantum-Hall effect in HOPG. This work demonstrates how powerful the combined approach between the high quality STS measurement and the first-principles calculation is in material science.  相似文献   

15.
We have made bulk and local investigations on defect induced magnetism in highly oriented pyrolytic graphite (HOPG) irradiated with a 40 MeV carbon beam. The local magnetic response of irradiated HOPG was studied by measuring the hyperfine field of recoil implanted (19)F using γ-ray time differential perturbed angular distribution (TDPAD) measurements. While the bulk magnetic properties of the irradiated sample show features characteristic of room temperature ferromagnetism, the hyperfine field data reflect enhanced paramagnetism with no indication of long range magnetic ordering. The experimental studies are further supported by ab initio density functional calculations. We believe that the ferromagnetic response in irradiated HOPG arises mostly from defect induced magnetic moments of carbon atoms in the near surface region, while those deep inside the host matrix remain paramagnetic.  相似文献   

16.
The local density of states (LDOS) near point defects on a surface of highly oriented pyrolytic graphite (HOPG) was studied at very low temperatures in magnetic fields up to 6 T. We observed localized electronic states over a distance of the magnetic length around the defects in differential tunnel conductance images at the valley energies of the Landau levels (LLs) as well as relatively extended states at the peak ones of LLs. These states appear mainly at energies above the Fermi energy corresponding to the electron LL bands. The data suggest that the quantum Hall state is realized in the quasi two dimensional electron system in HOPG. At the peak energy associated with the n=0 (electron) and -1 (hole) LLs characteristic of the graphite structure, a reduced LDOS around the defects is observed. The spatial distribution is almost field independent, which indicates that it represents the potential shape produced by the defects.  相似文献   

17.
2 MeV protons and 1 MeV carbon ions are bombarded on highly oriented pyrolytic graphite (HOPG) samples and their electronic transport measurements are carried out in the presence of magnetic field. The Magneto-Resistance (MR) measurements show measurable hysteresis in the resistance value after ion beam irradiation for the in-plane magnetic field direction as well as for the out-of-plane field direction. The MR depends on the thickness of the flake and the method of its separation from the bulk HOPG. The results substantiate that the ferromagnetic coupling between the magnetic moments at the vacancy defect sites in HOPG sensitively depends on the average defect separation. The average defect separation range of 1.7–0.5 nm allows only a part of the 40 μm thick proton beam irradiated sample to go for ferromagnetic ordering. Similar conclusions are drawn from carbon ion irradiated HOPG flake. The irradiation increases the resistance of the flake as well.  相似文献   

18.
Abstract

The technique of static low-temperature nuclear orientation has been used to investigate the nuclear electric quadrupole interaction of implanted 182Re (64h) and 183Re in thin foils of highly oriented pyrolytic graphite (HOPG) at temperatures down to 5 mK. The isotopes were recoil-implanted at a temperature of 700°C in order to limit the amount of lattice damage. The fraction of nuclei experiencing a large electric field gradient was considerably improved after two successive annealing sessions at 1200°C, from 1.0(0.6)% before annealing to 4.5(0.8)% after 6h and to 11.3(2.0)% after 162 h annealing. The electric field gradient for Re in HOPG is deduced to be Vzz = +5.4(2.6)·1022V/m2.  相似文献   

19.
We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers. Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions, in contrast to recently published data (J. ?ervenka et al., Nat. Phys. 5 (2009) 840). To check that the SQUID device provides correctly the small ferromagnetic signals obtained after subtracting the 100 times larger diamagnetic background, we have prepared a sample with a superconducting Pb-film deposited on one of the HOPG surfaces. We show that the field dependence of the measured magnetic moment and after the background subtraction is highly reliable even in the sub-μ emu range providing the real magnetic properties of the embedded small ferromagnetic and superconducting signals.  相似文献   

20.
Results of an in situ conduction electron-spin resonance (CESR) study of HNO, molecule intercalation into highly oriented pyrolytic graphite (HOPG) plate with width being comparable with the graphite skin-depth governed by thec-axis conductivity are presented. The changes in the graphite CESR signal line shape, intensity and linewidth and the stepwise changes both of intensity and linewidth of CESR signal of intercalated sample were clearly detected during this reaction. Under the assumption that the graphite CESR signal evolution is caused by the advance of a boundary separating the intercalated and nonintercalated HOPG, the average value of spin reorientation probability during the collision of current carriers with this interface and the diffusion coefficient of nitric acid into the HOPG plate were extracted from experimental data. With the chemical potential versus intercalation time proposed by the authors for the experimental conditions, the stepwise changes of the CESR signal intensity of intercalated sample was calculated theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号