首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase diagram of an asymmetric solute-solvent mixture is investigated at the level of the effective one-component fluid. The solvent is taken into account by computing the potential of mean force between solute particles at infinite dilution for different models of solvent-solvent and solute-solvent short range interactions. Fluid-fluid and fluid-solid coexistence lines are determined from the free energy in the reference hypernetted chain theory for the fluid branch and from a variational perturbation theory for the solid one. The phase boundaries so determined compare well with recently published Monte Carlo data for mixtures of pure hard spheres. The influence of solute-solvent and solvent-solvent short range attractive forces is then investigated. When compared with pure hard core interactions, these forces are found to produce dramatic changes in the phase diagram, especially on the solvent packing fractions at which a dense fluid of solutes can be stable and on the separation of the fluid-fluid and fluid-solid coexistence lines. Finally, the connection of these results with the behavior of some colloidal suspensions is emphasized.  相似文献   

2.
张程宾  许兆林  陈永平 《物理学报》2014,63(21):214706-214706
为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低. 关键词: 速度滑移 温度阶跃 流固界面 粗糙度  相似文献   

3.
针对传统CFD数值计算方法难以实现风力机动态旋转及其旋转状态下的流固耦合计算,本文结合格子玻尔兹曼(LBM)方法易于处理动态复杂边界的特点及大涡模拟(LES)方法在非稳态涡流结构捕捉上的优势,采用LBM-LES联合方法进行三维风力发电机整机气动性能及尾流结构仿真研究,同时采用尺度自适应方法对尾涡结构进行跟踪和精细化计算。针对NREL PhaseⅥ型试验机进行模拟,得到了与实验结果吻合的流动形态及尾流结构演变规律,分析了尾流区速度演变规律并对比了不同亚格子湍流模型对计算结果的影响.  相似文献   

4.
王胜  徐进良  张龙艳 《物理学报》2017,66(20):204704-204704
采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.  相似文献   

5.
We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media. A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid. The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.  相似文献   

6.
Despite recent advances, precise simulation of fluid-solid transitions still remains a challenging task. Thermodynamic integration techniques are the simplest methods to study fluid-solid coexistence. These methods are based on the calculation of the free energies of the fluid and the solid phases, starting from a state of known free energy which is usually an ideal-gas state. Despite their simplicity, the main drawback of thermodynamic integration techniques is the large number of states that must be simulated. In the present work, a thermodynamic integration technique, which reduces the number of simulated states, is proposed and tested on a system of particles interacting via an inverse twelfth-power potential energy function. The simulations are implemented at constant pressure and the solid phase is modeled according to the constrained cell model of Hoover and Ree. The fluid and the solid phases are linked together by performing constant-pressure simulations of a modified cell model. The modified cell model, which was originally proposed by Hoover and Ree, facilitates transitions between the fluid and the solid phase by tuning a homogeneous external field. This model is simulated on a constant-pressure path for a series of progressively increasing values of the field, thus allowing for direct determination of the free energy difference between the fluid and the solid phase via histogram reweighting. The size-dependent results are analyzed using histogram reweighting and finite-size scaling techniques. The scaling analysis is based on studying the size-dependent behavior of the second- and higher-order derivatives of the free energy as well as the dimensionless moment ratios of the order parameter. The results clearly demonstrate the importance of accounting for size effects in simulation studies of fluid-solid transitions.  相似文献   

7.
An approach based on a lattice version of the Boltzmann kinetic equation for describing multiphase flows in nano- and microcorrugated devices is proposed. We specialize it to describe the wetting-dewetting transition of fluids in the presence of nanoscopic grooves etched on the boundaries. This approach permits us to retain the essential supramolecular details of fluid-solid interactions without surrendering--actually boosting--the computational efficiency of continuum methods. The method is used to analyze the importance of conspiring effects between hydrophobicity and roughness on the global mass flow rate of the microchannel. In particular we show that smart surfaces can be tailored to yield very different mass throughput by changing the bulk pressure. The mesoscopic method is also validated quantitatively against the molecular dynamics results of [Cottin-Bizonne, Nat. Mater. 2, 237 (2003)].  相似文献   

8.
A density functional approach is used to study the adsorption and phase behaviour of a Lennard-Jones (LJ) fluid in slit-like pores with energetically heterogeneous walls, investigating how the randomly varying part of the fluid-solid potential imposed on a periodic ‘back-ground’ potential modifies the phase behaviour of the confined fluid. Non-local density functional theory is employed to describe the system. To study the system with a random external field, the method used is based on investigations of several replicas of the system and on averaging the final thermodynamic results over the replicas.  相似文献   

9.
Zhao Y  Shen Z  Lu J  Ni X 《Ultrasonics》2006,44(Z1):e1169-e1172
The finite element method is used to simulate the laser-excited leaky Rayleigh wave at air-solid cylindrical interfaces. A whole arithmetic of fluid-solid interaction is presented, which includes a coupling matrix that describing the process of the interaction between fluid and solid, the Arbitrary Lagrangian-Eulerian (ALE) formulation for treating the variation of fluid domain, which results from the Rayleigh wave propagating on the cylindrical interface, etc. Typical calculation is executed and the results show that the polarity of leaky Rayleigh waveform gradually changes as it propagates on the air-solid cylindrical interface.  相似文献   

10.
In hard-sphere systems, there is a fluid-solid transition, but no gas-liquid transition. In the fluid region, however, one can find a purely geometric percolation transition, which is studied in detail. The van der Waals model of hard spheres is treated. In this model, a uniform negative background potential is added. This modification does not change the structure, but induces a gas-liquid transition. In fact, percolation and the gas-liquid transition can be related to each other.  相似文献   

11.
Despite impressive advances, precise simulation of fluid-fluid and fluid-solid phase transitions still remains a challenging task. The present work focuses on the determination of the phase diagram of a system of particles that interact through a pair potential, ?(r), which is of the form ?(r)?=?4?[(σ/r)(2n)?-?(σ/r)(n)] with n?=?12. The vapor-liquid phase diagram of this model is established from constant-pressure simulations and flat-histogram techniques. The properties of the solid phase are obtained from constant-pressure simulations using constrained cell models. In the constrained cell model, the simulation volume is divided into Wigner-Seitz cells and each particle is confined to moving in a single cell. The constrained cell model is a limiting case of a more general cell model which is constructed by adding a homogeneous external field that controls the relative stability of the fluid and the solid phase. Fluid-solid coexistence at a reduced temperature of 2 is established from constant-pressure simulations of the generalized cell model. The previous fluid-solid coexistence point is used as a reference point in the determination of the fluid-solid phase boundary through a thermodynamic integration type of technique based on histogram reweighting. Since the attractive interaction is of short range, the vapor-liquid transition is metastable against crystallization. In the present work, the phase diagram of the corresponding constrained cell model is also determined. The latter is found to contain a stable vapor-liquid critical point and a triple point.  相似文献   

12.
The colour field non-equilibrium molecular dynamics method is applied to model fluid transfer between two fluid phases separated by microporous membranes (i.e. pore width ≤ 2 nm). The model is simple. All particles show short range spherical interactions, but reproduce the main features of the experimental phenomenology of molecular sieve membranes. An external force is applied to the fluid particles and, due to the presence of the membrane, a stationary flux across the system results. A range of mass transfer coefficients was investigated and the fluxes were found to be linear with force intensities. The density was found to have a small effect on molecular mobility, while temperature had a more significant effect, showing the features of an activated process. In addition, the changes in these fluxes with the membrane size, and the cross interaction parameters between the fluid and the membrane particles were examined.  相似文献   

13.
A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.  相似文献   

14.
An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Ku?sel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.  相似文献   

15.
以粗糙平行平板微通道为研究对象,以三角形锯齿状粗糙元模拟固体表面的粗糙度,采用CFD流体固体共轭传热技术数值研究了绝对粗糙度和相对粗糙度对平行平板微通道流动和传热特性的影响,着重分析了粗糙度和流体速度对水力入口段长度和热力入口段长度的影响规律,同时研究了相对粗糙度对微通道转捩雷诺数的影响,为进一步揭示微微通道的流动和传热机理提供了依据.  相似文献   

16.
A novel finite volume method is developed to investigate the axisymmetric convection flow and heat transfer of fractional viscoelastic fluid past a vertical cylinder. Fractional cylindrical governing equations are formulated by fractional Maxwell model and generalized Fourier's law. The velocity slip and temperature jump boundary conditions are considered across the fluid-solid interface. Numerical results are validated by exact solutions of special case with source terms. The effects of fractional derivative parameter and boundary condition parameters on flow and heat transfer characteristics are discussed. The viscoelastic fluid performs evident shear thickening property in the fractional Maxwell constitutive relation. Moreover, the boundary condition parameters have remarkable influence on velocity and temperature distributions.  相似文献   

17.
三维气热耦合数值模拟是涡轮叶片冷却结构详细设计中应用的热分析方法。三维气热耦合数值模拟的计算域实体模型建立借助于参数化方法,模型包括冷却结构尽可能多的细节、并保证足够高的模型精度。网格生成时,流体域采用结构化网格,并且需要在换热壁面上根据湍流模型的要求进行加密。将管网计算结果与三维数值模拟结果进行对比,发现管网计算的精度有限,而气热耦合计算方法能够捕捉更多流动换热现象,计算结果相对可信。对单个冷却结构方案进行三维数值计算的周期为5~15天,基本满足工程设计要求。  相似文献   

18.
Determination of many-body interactions between particles of arbitrary shape in a viscous fluid is a key problem in the simulation of concentrated suspensions. Three-dimensional flows involving such complex fluid-solid boundaries are beyond the scope of spatial methods, even on supercomputers. Boundary integral methods convert the three-dimensional PDE to a two-dimensional integral equation. Unfortunately, conventional boundary methods yield Fredholm integral equations of the first kind, and dense linear systems which are too large for accurate solution. We have pursued a different boundary integral formulation, which yields Fredholm integral equations of the second kind; these arc amenable to iterative solution. The velocity representation involves a compact operator, so a discrete spectrum results. Wielandt deflations give dramatic reductions in the spectral radius and accurate solutions are obtained after only a few iterations (typically less than 10). An analytic construction of the spectrum for sphere sphere interactions confirms these numerical results. The mathematics is similar to that encountered in the mixing ofd-atomic orbitals to form bonding/antibonding molecular orbitals in transition metals. The memory-saving version of our code can be implemented directly on a dedicated MicroVAX to solve problems involving clusters of less than a dozen particles. For a fixed number of processors, the algorithm grows essentially asN 2, whereN is the system size, so computational times are readily estimated on more powerful super-minicomputers and supercomputers using standard dot-product benchmarks. The algorithm is especially ideal for gigaflop and teraflop parallel array processors under construction in a number of computer companies; an analysis of the spectrum reveals that asynchronous iterative methods will converge, leading the way to a rigorous formulation of screening concepts for suspended particles of arbitrary shape.  相似文献   

19.
The lattice Boltzmann cellular automaton method has been successfully extended for analysis of fluid interactions with a deformable membrane or web. The hydrodynamic forces on the solid web are obtained through computation of the fluid flow stress at the moving boundary using the lattice Boltzmann method. Analysis of solid boundary deformation or vibration due to hydrodynamic force is based on Newtonian dynamics and a molecular dynamic type approach.  相似文献   

20.
Density profiles for chemically reacting hard spheres near the crystalline surface of the graphite basal plane are investigated by using the integral equation approach. The dependence of the profiles on the density of the bulk fluid, the degree of dimerization and the fluid-solid interaction potential is studied. It is shown that the density profiles of this chemically reacting fluid near the crystalline surface exhibit new features, compared with the case of a hard sphere fluid near a structureless wall.The authors wish to express gratitude to the CONACYT of México (Grant No. 4186-E9405 and el Fondo para Cátedras Patrimoniales de Excelencia) for financial support of the project. S.S. thanks KBN for partial financial support (Grant No. 2P30307705). We would like to express our thanks to A. Malijevsky for valuable discussions and comments. O.P. is grateful to C. Lozada Garcia for helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号