首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of sequence-based analyses have been developed to identify protein segments, which are able to form membrane interactive amphiphilic alpha-helices. Earlier techniques attempted to detect the characteristic periodicity in hydrophobic amino acid residues shown by these structure and included the Molecular Hydrophobic Potential (MHP), which represents the hydrophobicity of amino acid residues as lines of isopotential around the alpha-helix and analyses based on Fourier transforms. These latter analyses compare the periodicity of hydrophobic residues in a putative alpha-helical sequence with that of a test mathematical function to provide a measure of amphiphilicity using either the Amphipathic Index or the Hydrophobic Moment. More recently, the introduction of computational procedures based on techniques such as hydropathy analysis, homology modelling, multiple sequence alignments and neural networks has led to the prediction of transmembrane alpha-helices with accuracies of the order of 95% and transmembrane protein topology with accuracies greater than 75%. Statistical approaches to transmembrane protein modeling such as hidden Markov models have increased these prediction levels to an even higher level. Here, we review a number of these predictive techniques and consider problems associated with their use in the prediction of structure / function relationships, using alpha-helices from G-coupled protein receptors, penicillin binding proteins, apolipoproteins, peptide hormones, lytic peptides and tilted peptides as examples.  相似文献   

2.
The elasticity of alpha-helices is examined using equilibrium molecular-dynamics simulations. From the statistics of curvatures and twists, we compute the elastic moduli of several representative alpha-helices, both in the presence and absence of aqueous solvent. We discover that the bending modulus (persistence length) of the helices is independent of the amino-acid sequence, although helices in water are slightly softer than in vacuum. The response of the helices under the action of an external force is also computed and compared with continuum mechanics predictions. Within the time scale of our simulation, we show that the properties of alpha-helices are well reproduced by an elastic and isotropic rod. The persistence length (bending modulus) of most alpha-helices in water or vacuum is approximately 100 nm, roughly twice that of DNA.  相似文献   

3.
4.
Proteins in nature fold into native conformations in which combinations of peripherally projected aliphatic, aromatic and ionic functionalities direct a wide range of properties. Alpha-helices, one of the most common protein secondary structures, serve as important recognition regions on protein surfaces for numerous protein-protein, protein-DNA and protein-RNA interactions. These interactions are characterized by conserved structural features within the alpha-helical domain. Rational design of structural mimetics of these domains with synthetic small molecules has proven an effective means to modulate such protein functions. In this tutorial review we discuss strategies that utilize synthetic small-molecule antagonists to selectively target essential protein-protein interactions involved in certain diseases. We also evaluate some of the protein-protein interactions that have been or are potential targets for alpha-helix mimetics.  相似文献   

5.
[reaction: see text] This report describes the solid-phase synthesis of hydrogen-bond surrogate-derived artificial alpha-helices by a ring-closing metathesis reaction. From a series of metathesis catalysts evaluated for the synthesis of these helices, the Hoveyda-Grubbs catalyst was found to afford high yields of the macrocycle irrespective of the peptide sequence.  相似文献   

6.
7.
alpha-Helices are important structural elements in proteins. To provide a scaffold for the facial recognition of peptides, we have explored the interaction of cationic mixed monolayer protected clusters (MMPCs) with a tetra-aspartate peptide in water. In these studies, substantial enhancement of peptide helicity was observed upon addition of the MMPC. Significantly, this stabilization increased with time, demonstrating templation of the monolayer to the peptide helix.  相似文献   

8.
The structural characteristics of alpha-helices in poly-alanine-based peptides have been investigated via molecular dynamics simulation with the goal of understanding the basic features of peptide simulations within the context of a model system, classical molecular dynamics with generalized Born (GB) solvation, and to shed insight into the formation and stabilization of alpha-helices in short peptides. The effects of peptide length, terminal charges, proline substitution, and temperature on the alpha-helical secondary structure have been studied. The simulations have shown that distinct secondary structure begins to develop in peptides with lengths approaching 10 residues while ambiguous structures occur in shorter peptides. The helical content of peptides with lengths > or =10 amino acids is observed to be nearly constant up to (Ala)(40). Interestingly, terminal charges and proline in the second position from the N-terminus alter the secondary structure locally with little effect on the overall alpha-helical content of the peptide. The free energy profile of helix formation was also investigated. A large increase in free energy accompanying the formation of helices with more than two consecutive hydrogen bonds in the (i, i + 4) pattern was observed while the free energy increases linearly with additional hydrogen bonds. Values for the change in enthalpy and entropy of helix nucleation and propagation are reported. Additionally the results obtained from the GB model are compared to explicit solvent simulations of two synthetic alanine-based peptides.  相似文献   

9.
The vibron dynamics associated to amide-I vibrations in a three-dimensional alpha-helix is described according to a generalized Davydov model. The helix is modeled by three spines of hydrogen-bonded peptide units linked via covalent bonds. To remove the intramolecular anharmonicity of each amide-I mode and to renormalize the vibron-phonon coupling, two unitary transformations have been applied to reach the dressed anharmonic vibron point of view. It is shown that the vibron dynamics results from the competition between interspine and intraspine vibron hops and that the two kinds of hopping processes do not experience the same dressing mechanism. Therefore, at low temperature (or weak vibron-phonon coupling), the polaron behaves as an undressed vibron delocalized over all the spines whereas at biological temperature (or strong vibron-phonon coupling), the dressing effect strongly reduces the vibrational exchanges between different spines. As a result the polaron propagates along a single spine as in the one-dimensional Davydov model. Although the helix supports both acoustical and optical phonons, this feature originates in the coupling between the vibron and the acoustical phonons only. Finally, the lattice distortion which accompanies the polaron has been determined and it is shown that residues located on the excited spine are subjected to a stronger deformation than the other residues.  相似文献   

10.
The two-vibron dynamics associated to amide-I vibrations in a three-dimensional (3D) alpha-helix is described according to a generalized Davydov model. The helix is modeled by three spines of hydrogen-bonded peptide units linked via covalent bonds. It is shown that the two-vibron energy spectrum supports both a two-vibron free states continuum and two kinds of bound states, called two-vibron bound states (TVBS)-I and TVBS-II, connected to the trapping of two vibrons onto the same amide-I mode and onto two nearest-neighbor amide-I modes belonging to the same spine, respectively. At low temperature, nonvanishing interspine hopping constants yield a three-dimensional nature of both TVBS-I and TVBS-II which the wave functions extend over the three spines of the helix. At biological temperature, the pairs are confined in a given spine and exhibit the same features as the bound states described within a one-dimensional model. The interplay between the temperature and the 3D nature of the helix is also responsible for the occurrence of a third bound state called TVBS-III which refers to the trapping of two vibrons onto two different spines. The experimental signature of the existence of bound states is discussed through the simulation of their infrared pump-probe spectroscopic response. Finally, the fundamental question of the breather-like behavior of two-vibron bound states is addressed.  相似文献   

11.
Structural Chemistry - In the present study, quantitative structure-activity relationship (QSAR) models were developed to predict analgesic activity of some mono-/bicyclic terpenoids and their...  相似文献   

12.
Nanoparticles featuring highly flexible sidechains template to peptides, demonstrating substantial pre-organization of the particle monolayer.  相似文献   

13.
Nanoscale surface patterning and polymerization of caffeic acid on 4-aminothiophenol-functionalized gold surfaces has been demonstrated with dip pen nanolithography (DPN). The diphenolic moiety of caffeic acid can be polymerized by biocatalysis with laccase or horseradish peroxidase. In the present study, the DPN patterned features were polymerized in situ through the use of the peroxidase. Using samples prepared by DPN, microcontact printing, and adsorption on macroscopic substrates, the products were characterized by electrostatic force microscopy (EFM), MALDI-TOF, X-ray photoelectron spectroscopy (XPS), UV-vis, and FT-IR. The in situ surface polymerization resulted in the formation of a quinone structure, while the phenyl ester formed in bulk polymerization reactions was not detected. A different coupling site was observed when comparing the polymers obtained from solution (bulk) vs the surface DPN reactions. The structural differences were attributed to surface-induced pre-organization and orientation of the monomers prior to the enzymatic polymerization step. The results of this study expand the application of DPN technology to surface modification and surface chemistry reactions wherein stereo-regularity and regioselectivity can be exploited.  相似文献   

14.
15.
Ion channels are integral membrane proteins that are responsible for controlling the flow of ions across the cell. There are various biological functions that are performed by different types of ion channels. Therefore for new drug discovery it is necessary to develop a novel computational intelligence techniques based approach for the reliable prediction of ion channels families and their subfamilies. In this paper random forest based approach is proposed to predict ion channels families and their subfamilies by using sequence derived features. Here, seven feature vectors are used to represent the protein sample, including amino acid composition, dipeptide composition, correlation features, composition, transition and distribution and pseudo amino acid composition. The minimum redundancy and maximum relevance feature selection is used to find the optimal number of features for improving the prediction performance. The proposed method achieved an overall accuracy of 100%, 98.01%, 91.5%, 93.0%, 92.2%, 78.6%, 95.5%, 84.9%, MCC values of 1.00, 0.92, 0.88, 0.88, 0.90, 0.79, 0.91, 0.81 and ROC area values of 1.00, 0.99, 0.99, 0.99, 0.99, 0.95, 0.99 and 0.96 using 10-fold cross validation to predict the ion channels and non-ion channels, voltage gated ion channels and ligand gated ion channels, four subfamilies (calcium, potassium, sodium and chloride) of voltage gated ion channels, and four subfamilies of ligand gated ion channels and predict subfamilies of voltage gated calcium, potassium, sodium and chloride ion channels respectively.  相似文献   

16.
The NMR spectrum of 1-chloronaphthalene has been studied in the nematic phase of N-(p′-ethoxybenzylidene)-p-n-butylaniline. Ratios of interproton distances have been derived.  相似文献   

17.
G-Protein Coupled Receptors (GPCRs) are one of the most important targets for pharmaceutical drug design. Over the past 30 years, mounting evidence has suggested the existence of homo and hetero dimers or higher-order complexes (oligomers) that are involved in signal transduction and some diseases. The number of reports describing GPCR oligomerization has increased, and in 2003, the organization of mouse rhodopsin into two-dimensional arrays of dimers was determined by an atomic force microscopic analysis. The analysis of the mouse rhodopsin complex has enabled us to discuss the oligomerization based on structural data. Although many unsolved problems still remains, the idea that GPCRs directly interact to form oligomers has been gradually accepted. One of the recent findings in the GPCR investigations is the clarification of the mechanisms of GPCR oligomerization at a molecular level. Most of these studies have suggested the importance of transmembrane alpha-helices for GPCR oligomerization. In this review, we will first summarize the importance of GPCR oligomerization and the functions of GPCRs. Then, we will explain the involvement of transmembrane alpha-helices in the oligomerization and a drug design strategy that targets these regions for GPCR oligomerization. Considering the current drug design methods, which are based on the modification of the protein-protein interactions of soluble regions of proteins, a "peptide mimic approach" that targets the transmembrane alpha-helices constituting the interfaces would be promising in drug discovery for GPCR oligomerization. For that purpose, we must know the positions of the interfaces. However, problems specific to membrane proteins have made it difficult to identify the positions of the interfaces experimentally. Therefore, information about the interfaces predicted by bioinformatics approaches is valuable. At the end of this review, several bioinformatics approaches toward interface prediction for oligomerization are introduced. The benefits and the pitfalls of these approaches are also discussed.  相似文献   

18.
Alpha-Helices are key structural components of proteins and important recognition motifs in biology. Short peptides (相似文献   

19.
This study gives a quantitative structure-activity relationship (QSAR) correlation of the 72 N-benzylsalicylamide derivatives properties with their antimycobacterial activity. The antimycobacterial activity was measured as the minimal inhibition concentration (MIC) determined for four strains of mycobacterium (M. avium, M. kansasii, M. kansasii clin.-clinically isolated form, and M. tuberculosis) after 14 days and after 21 days of cultivation. The objective was to identify the factors most closely defining biological activity of N-benzylsalicylamides, in order to enable QSAR prediction of new derivatives with high antimycobacterial activity. Optimal properties for the QSAR analysis were selected from several physicochemical properties, including lipophilicity parameter log P, molecular mass M, molar refraction MR, NMR chemical shifts, polarizability, etc. Many of the considered properties are different from those typically used in traditional QSAR. Selection of the most important properties was performed by one-way Analysis of Variance (ANOVA) and correlation analysis using the significance coefficients and the correlation coefficients, respectively. The chosen variables were further used in artificial neural networks (ANN) for predicting biological activity in the form of-log(MIC). Presented at the 1st International Conference “Applied Natural Sciences” on the occasion of the 10th anniversary of the University of Ss. Cyril and Methodius, Trnava, 7–9 November 2007.  相似文献   

20.
Vibrational energy storage and propagation are simulated in a fully atomic model of an alpha-helix by combining the AMBER force field for proteins with an extended version of the Davydov/Scott model for amide I vibrational transfer [A. Scott, Phys. Rep. 217, 1 (1992)]. Dipole-dipole interactions between transition dipole moments of amide I and its on-site energies are calculated from the corresponding three-dimensional atomic positions. The comparison of the theoretically calculated absorption line shapes with the experimentally measured ones leads to a putative value of the nonlinearity parameter of -30 pN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号