首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The role of polymer charge density in the kinetics of the adsorption and desorption, on silica, of the polyelectrolyte poly(ethyleneimine) (PEI) was investigated by stagnation-point flow reflectometry. In the first series of experiments, PEI solutions were introduced at the same ionic strength and pH as the background solvent. It was found that the adsorbed amount of PEI increased by increasing pH. In the second series of investigations, several PEI solutions with ascending pH were introduced consecutively into the cell. In these cases, a stepwise buildup of the adsorbed amount was observed and the "final" adsorbed amounts were observed to be roughly equal with the adsorbed amounts of the first series of measurements at the same pH. Finally, adsorption/desorption experiments were performed where the preadsorption of PEI was followed by the introduction of PEI solutions of descending pH. No desorption was detected when the pH changed from pH = 9.7 to pH = 5.8. However, when there was a 9.7 --> 3.3 or 5.8 --> 3.3 decrease in the pH, the kinetic barriers of desorption seemed to completely disappear and roughly the same adsorbed amount as in the first series of experiments at pH = 3.3 was quickly attained by desorption of the PEI. This study reveals the high impact of pH, affecting parameters such as charge density of the surface and polyelectrolyte as well as the structure of the adsorbed macromolecules, on the desorption properties of weak polyelectrolytes. The observed interfacial behavior of PEI may have some important consequences for the stability of alternating polyelectrolyte multilayers containing weak polyelectrolytes.  相似文献   

2.
Using the method of phase modeling, the pH values of solutions corresponding to the uncharged surface of passive iron and ferric oxide γ-Fe2O3 (pH0) are compared. According to the theory of connected places, the charge of metal oxide surface is determined by the adsorption or desorption of hydrogen ions leading to a change in the potential drop at the oxide/solution interface. Preliminarily passivated iron electrode was washed with twice-distilled water and placed into 0.5 M NaNO3 solution with various pH values; the variation in the potential (ΔE) with time was studied. The pH0 value for passive electrode under the open-circuit conditions was determined by the dependence of ΔE on the pH value (pH0 6.2 ± 0.1). The pH0 value was close to that for γ-Fe2O3 (pH0 6.2), which was determined by the method of potentiometrical titration of oxide suspension in the nitrate solution. The introduction of surface-active ions Ba2+ and Cl? changes the charge of passive iron surface: Ba2+ ions increase the electrode potential, while Cl? ions decrease it. Comparing the pH0 values for passive electrode and metal oxides, one can identify the composition of passive electrode surface.  相似文献   

3.
Stabilization of arsenic contaminated soils by iron oxides has been proposed as a remediation technique to prevent leaching of arsenate into the environment. Fundamental studies are needed to establish under which conditions the complexes formed are stable. In the present work, a powerful technique, viz. ATR-FTIR spectroscopy, is adapted to the studies of adsorption of arsenate species on iron oxides. This technique facilitates acquisition of both quantitative and qualitative in situ adsorption data.In the present work, about 800 nm thick films of 6-lineferrihydrite were deposited on ZnSe ATR crystals. Arsenate adsorption on the ferrihydrite film was studied at pD values ranging from 4 to 12 and at an arsenate concentration of 0.03 mM in D2O solution. The amount of adsorbed arsenate decreased with increasing pD as a result of the more negatively charged iron oxide surface at higher pD values. The adsorption and desorption kinetics were also studied. Arsenate showed a higher adsorption rate within the first 70 min and a much lower adsorption rate from 70 to 300 min. The low adsorption rate at longer reaction times was partly due to a low desorption rate of already adsorbed carbonate species adsorbed at the surface. The desorption of carbonate species was evidenced by the appearance of negative absorption bands. The desorption of adsorbed arsenate complexes was examined by flushing with D2O at pD 4 and 8.5 and it was found that the complexes were very stable at pD 4 suggesting formation of mostly inner-sphere complexes whereas a fraction of the complexes at pD 8.5 were less stable than at pD 4, possibly due to the formation of outer-sphere complexes.In summary, the ATR technique was shown to provide in situ information about the adsorption rate, desorption rate and the speciation of the complexes formed within a single experiment, which is very difficult to obtain using other techniques.  相似文献   

4.
The ionic strength dependence of humic acid (HA) adsorption on magnetite (Fe3O4) was investigated at pH 5, 8 and 9, where variable charged magnetite is positive, neutral and negative, respectively. The adsorption studies revealed that HA has high affinity to magnetite surface especially at lower pH, where interacting partners have opposite charges. However, in spite of electrostatic repulsion at pH 9 notable amounts of humate are adsorbed. Increasing ionic strength enhances HA adsorption at each pH due to charge screening. The dominant interaction is probably a ligand-exchange reaction, nevertheless the Coulombic contribution to the organic matter accumulation on oxide surface is also significant under acidic condition. The results from size exclusion chromatography demonstrate that the smaller size HA fractions enriched with functional groups are adsorbed preferentially on the surface of magnetite at pH 8 in dilute NaCl solution.  相似文献   

5.
The adsorption of ferric and ferrous iron onto the native oxide of the SiO2/Si(111) surface has been evaluated using X‐ray photoelectron spectroscopy (XPS). Through a series of immersion experiments, performed at room temperature and pH 1, it has been shown that the ferric species is strongly adsorbed onto the hydrophilic surface, while ferrous iron remains in solution. Dehydroxylation of the silica surface by etching with hydrofluoric acid reduces the concentration of receptive Si‐OH groups, thereby limiting iron adsorption. The experiments were reproduced in a combined ultrahigh vacuum‐electrochemical system (UHV‐EC), which allowed a carbon‐free surface to be prepared before contacting the iron solutions, and confirmed the strong affinity of ferric iron towards the SiO2/Si(111) surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This study reports thermodynamic and kinetic data of Sb(III) adsorption from single metal solutions onto synthetic aqueous goethite (alpha-FeOOH). Batch equilibrium sorption experiments were carried out at 25 degrees C over a Sb:Fe molar range of 0.005-0.05 and using a goethite concentration of 0.44 g Fe/L. Experimental data were successfully modelled using Langmuir (R2 > or = 0.891) and Freundlich (R2 > or = 0.990) isotherms and the following parameters were derived from triplicate experiments: Kf = 1.903 +/- 0.030 mg/g and 1/n = 0.728 +/- 0.019 for the Freundlich model and b = 0.021 +/- 0.003 L/mg and Qmax = 61 +/- 8 mg/g for the Langmuir model. The thermodynamic parameters determined were the equilibrium constant, Keq =1.323 +/- 0.045, and the Gibb's free energy, DeltaG0 = -0.692 +/- 0.083 kJ/mol. The sorption process is very fast. At a Sb:Fe molar ratio of 0.05, 40-50% of the added Sb is adsorbed within 15 min and a steady state is achieved. The experimental data also suggest that desorption can occur within 24 h of reaction due to the oxidation of Sb(III) on the goethite surface. Finally, calculated pH of the aqueous solution using MINTEQ2 agrees well with the measured pH (3.9 +/- 0.7; n = 30). At pH 4, the dominant Sb species in solution are Sb(OH)3 and HSbO2 which both likely adsorb as inner sphere complexes to the positively charged goethite surface.  相似文献   

7.
Adsorption of inositol hexaphosphate (IP(6)) on goethite has been studied as a function of pH and concentration, and by use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). While adsorption was highest at low pH, a significant amount remained adsorbed above pH 10 where, in the absence of IP(6), the surface is expected to have a net negative charge. The adsorption isotherm at pH 5.5 indicated strong binding to the surface with each adsorbed species occupying about 2.5 nm(2). ATR-FTIR spectra of IP(6) solutions in the pH range from 2 to 12 were fitted with a single set of IR bands which were assigned primarily by analogy with phosphate spectra. From its variation in intensity with pH the band at 1040 cm(-1) was assigned to the effect of hydrogen bonding on the PO vibration. No additional bands were required to fit the spectra of IP(6) adsorbed to goethite, indicating that adsorption occurs by outer-sphere complexation in this system. At all pH values studied the band associated with hydrogen bonding was more intense for the adsorbed species than in solution at the corresponding pH indicating that hydrogen bonding plays an important role in binding IP(6) to goethite.  相似文献   

8.
Ferrocyanide (Fe(CN)6(4-)) adsorption onto gamma-alumina ( gamma-Al2O3(s) ) and gibbsite (Al(OH)3(s)) was investigated over a wide pH range and at various solid loadings. Batch experiments were performed using 100-ml solutions (I = 0.01 M NaCl) dosed with 1.0 mgl(-1) Fe(CN)6(4-) as CN. Equilibrium adsorption-pH edges were developed for 0.3, 0.6, 1.2, and 2.0 gl(-1) gamma-Al(2)O3(s) and 25 gl(-1) Al(OH)3(s). Ferrocyanide adsorption increased as pH decreased, consistent with the general pH dependence for adsorption of anions onto oxide minerals. Ferrocyanide adsorption onto Al(OH)3(s) was approximately 300 times lower than onto gamma-Al(2)O3(s) on a unit weight basis due to the higher surface reactivity of the gamma-Al(2)O3(s). Ferrocyanide adsorption onto gamma-Al(2)O3(s) was significantly greater than has been reported for goethite (FeOOH(s)), and both gamma-Al(2)O3(s) and FeOOH(s) adsorbed ferrocyanide to a greater extent than Al(OH)3(s) . The investigation showed that ferrocyanide can adsorb significantly onto aluminum oxides spanning a range of crystallinity and properties, with the extent of adsorption highly dependent on pH, the solid crystalline structure, and associated surface reactivity.  相似文献   

9.
The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.  相似文献   

10.
The environmental and health effects of the contamination of soils by heavy metals depend on the ability of the soils to immobilize these contaminants. In this work, the adsorption and desorption of Cu and Zn in the surface layers of 27 acid soils were studied. Adsorption of Cu(II) from 157-3148 mumol L(-1) solutions was much greater than adsorption of Zn(II) from solutions at the same concentration. For both Cu and Zn, the adsorption data were fitted better by the Freundlich equation than by the Langmuir equation. Multiple regression analyses suggest that Cu and Zn adsorption depends to a significant extent on pH and CEC: for both metals these variables accounted for more than 80% of the variance in the Freundlich pre-exponential parameter K(F), and pH also accounted for 57% of the variance in 1/n for Zn and, together with carbon content, for 41% of the variance in 1/n for Cu. The percentage of adsorbed metal susceptible to desorption into 0.01 M NaNO3 was greater for Zn than for Cu, but in both cases depended significantly on pH, decreasing as pH increased. In turn, both pH(H2O) and pH(KCl) are significantly correlated with cation exchange capacity. Desorption of metal adsorbed from solutions at relatively low concentration (787 mumol L(-1)) exhibited power-law dependence on Kd, the quotient expressing distribution between soil and soil solution in the corresponding adsorption experiment, decreasing as increasing Kd reflected increasing affinity of the soil for the metal. The absence of a similarly clear relationship when metal had been adsorbed from solutions at relatively high concentration (2361 mumol L(-1)) is attributed to the scant between-soil variability of Kd at these higher concentrations. In general, adsorption was greater and subsequent desorption less in cultivated soils than in woodland soils.  相似文献   

11.
Using microelectrophoresis and electric light scattering techniques, we investigated the adsorption characteristics, surface coverage and surface electric parameters of superstructures from two isoforms of plastocyanin, PCa and PCb, in an oxidized state adsorbed on beta-ferric hydrous oxide particles. The surface electric charge and electric dipole moments of the composite particles and the thickness of the protein adsorption layer are determined in a wide pH range, at different ionic strengths and concentration ratios of PC to beta-FeOOH. The adsorption of the two proteins was found to shift the particles' isoelectric point and to alter the total electric charge and the electric dipole moments of the oxide particles to different extent. A "reversal" in the direction of the permanent dipole moment is observed at lower pH for PCb- than for PCa-coated oxide particles. Strict correlation is found between the changes in the electrokinetic charge of the composite particles and the variation in their "permanent" dipole moments. Data suggest that the adsorption of the proteins is driven by electrostatic and/or hydrophobic interactions with the oxide surfaces dependent on pH. The adsorption behaviour is consistent with the involvement of the "eastern" and "northern" patches of the plastocyanin molecules in their adsorption on the oxide surfaces that are differently charged depending on pH.  相似文献   

12.
The adsorption of Eu(III) on multiwalled carbon nanotubes (MWCNTs) as a function of pH, ionic strength and solid contents are studied by batch technique. The results indicate that the adsorption of Eu(III) on MWCNTs is strongly dependent on pH values, dependent on ionic strength at low pH values and independent of ionic strength at high pH values. Strong surface complexation and ion exchange contribute to the adsorption of Eu(III) on MWCNTs at low pH values, whereas surface complexation and surface precipitation are the main adsorption mechanism of Eu(III) on MWCNTs. The desorption of adsorbed Eu(III) from MWCNTs by adding HCl is also studied and the recycling use of MWCNTs in the removal of Eu(III) is investigated after the desorption of Eu(III) at low pH values. The results indicate that adsorbed Eu(III) can be easily desorbed from MWCNTs at low pH values, and MWCNTs can be repeatedly used to remove Eu(III) from aqueous solutions. MWCNTs are suitable material in the preconcentration and solidification of radionuclides from large volumes of aqueous solutions in nuclear waste management.  相似文献   

13.
Specular reflectance changes have been used to examine the specific adsorption of bromide on gold in the presence of a large excess of supporting electrolyte (NaF) which is not specifically adsorbed. A linear relation has been demonstrated between the reflectance changes and the surface excess of bromide through the examination of the time dependence of the reflectance under conditions where the rate of adsorption of the bromide is diffusion controlled and hence known. The adsorption isotherms have been found to follow Temkin behavior. The electrosorption valency has been evaluated from the charge and surface excess at constant potential and found to be ?0.49 to ?0.59, depending on the potential. Various mechanisms for the subtantial changes in reflectance attending the specific adsorption of anions are discussed. The observed effects cannot be explained on the basis of changes in the charge on the electrode and corresponding changes in the contribution of the conduction band to the surface optical properties. The principal mechanism is proposed to be modifications in the surface electronic states of the metal electrode through direct orbital interactions between the adsorbed anions and the metal.  相似文献   

14.
Platinum electrodes have been investigated in sulfuric acid solutions in the hydrogen adsorption–desorption region by electrochemical quartz crystal nanobalance (EQCN). It was found that a well-developed peak (the so-called third peak) between the two main peaks appeared when, following the cycling in the oxide region, the electrode was kept at potentials just more positive than the potential of hydrogen evolution under the same conditions. The extent of this third peak and its ratio to oxidation peaks of the strongly and weakly adsorbed hydrogen depend on the waiting time at potentials mentioned above as well as on the scan rate. Similarly to the other two peaks, the simultaneous EQCN response shows a slight mass increase which can be assigned to adsorption of HSO4 ? ions at the platinum surface. Because the third peak appears only after a potential excursion in the oxide region, it is related to the formation of specific surface sites on which hydrogen can be adsorbed with an energy which falls between the energies of the weakly and strongly bound hydrogen. The waiting time effect indicates that this adsorption is a slow process, and it is the very reason that it cannot be observed during the second cycle. The scan rate dependence can be elucidated by the transformation of this type of adsorbed hydrogen to the other two forms.  相似文献   

15.
Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.  相似文献   

16.
Using microelectrophoresis and electric light scattering techniques, we investigated the adsorption characteristics, surface coverage and surface electric parameters of superstructures from two isoforms of plastocyanin, PCa and PCb, in an oxidized state adsorbed on β-ferric hydrous oxide particles. The surface electric charge and electric dipole moments of the composite particles and the thickness of the protein adsorption layer are determined in a wide pH range, at different ionic strengths and concentration ratios of PC to β-FeOOH. The adsorption of the two proteins was found to shift the particles’ isoelectric point and to alter the total electric charge and the electric dipole moments of the oxide particles to different extent. A “reversal” in the direction of the permanent dipole moment is observed at lower pH for PCb- than for PCa-coated oxide particles. Strict correlation is found between the changes in the electrokinetic charge of the composite particles and the variation in their “permanent” dipole moments. Data suggest that the adsorption of the proteins is driven by electrostatic and/or hydrophobic interactions with the oxide surfaces dependent on pH. The adsorption behaviour is consistent with the involvement of the “eastern” and “northern” patches of the plastocyanin molecules in their adsorption on the oxide surfaces that are differently charged depending on pH.  相似文献   

17.
Protein adsorption characteristics of calcium hydroxyapatite (Hap) modified with pyrophosphoric acids (PP(a)) were examined. The PP(a) modified Hap particles (abbreviated as PP-Hap) possessed anchored polyphosphate (PP: P-{O-PO(OH)}(n)-OH) branches on their surfaces. The proteins of bovine serum albumin (BSA: isoelectric point (iep)=4.7, molecular mass (M(s))=67,200 Da, acidic protein), myoglobin (MGB: iep=7.0, M(s)=17,800 Da, neutral protein), and lysozyme (LSZ: iep=11.1, M(s)=14,600 Da, basic protein) were examined. The zeta potential (zp) of PP-Hap particles as a function of pH overlapped; zp-pH curves were independent of the concentration of pyrophosphoric acids (abbreviated as [PP(a)]) used for modifying Hap surface. The saturated amounts of adsorbed BSA (Delta n(ads)(BSA)) were increased three-fold by the surface modification with PP(a) though they were independent of the [PP(a)]. Furthermore, the fraction of BSA desorption was independent of the [PP(a)]. This enhancement of BSA adsorption onto the PP-Hap is due to the hydrogen bonding between oxygen and OH groups of the PP-branches and functional groups of BSA molecules. In the case of LSZ, a more higher adsorption enhancement was observed; the saturated amount of adsorbed LSZ (Delta n(ads)(LSZ)) for Hap modified at [PP(a)]=6 mmol/dm(3) was nine-fold than that for Hap unmodified. This remarkable adsorption enhancement was explained by a three-dimensional binding mechanism; LSZ molecules were trapped inside of the PP-branches. Hence, a fraction of LSZ desorption was decreased with an increase in the [PP(a)]; as more PP-branches are presented on the surface the higher retardation of LSZ desorption was induced. It was expected from their small size that MGB adsorb between the PP-branches as well as LSZ. However, the amounts of adsorbed MGB (Delta n(ads)(MGB)) did not vary and were independent of the [PP(a)] due to the small numbers of functional groups of MGB. In addition, no dependence of the fraction of MGB desorption on the [PP(a)] was observed. The results of zp for all the protein systems supported the mode of protein adsorption discussed. The anchored structure of the PP-branches developed on the Hap surface to provide three-dimensional protein adsorption spaces was proved by a comparative experiment that was elucidating the effect of pyrophosphate ions for BSA adsorption onto Hap.  相似文献   

18.
Several physicochemical properties of chicken egg white lysozyme (LSZ) in electrolyte solutions were determined. The hydrodynamic diameter of LSZ at an ionic strength of 0.15 M was found to be 4.0 nm. Using the determined parameters, the number of uncompensated (electrokinetic) charges, N(c), on the molecule surface was calculated from the electrophoretic mobility data. It was found that the N(c) = 2.8 at pH = 3.0 and an ionic strength of I = 0.15 M. At the lower ionic strength, I = 1 × 10(-3) M, this positive charge increased to N(c) = 5.6 at a pH = 3.0 The physicochemical characteristics were supplemented by the dynamic viscosity measurements. The intrinsic viscosity and the hydrodynamic diameter results were compared with theoretical predictions from Brenner's model. Using this approach, it was found that the effective molecule length of LSZ is equal to L(ef) = 5.6 nm. Additional information on the LSZ adsorbed films was obtained by the contact angle measurements. The notably large contact angles were measured on LSZ films formed under the conditions where both the LSZ and the mica were oppositely charged. The higher the positive zeta potential of LSZ, the greater the contact angle measured, which indicates that LSZ affinity for the adsorption on mica increases with its uncompensated charge. The adsorption dependence on the zeta potential of LSZ was explained, assuming a roughly uniform distribution of the net charge on the molecule surface. This assumption is supported by the results of depositing negatively charged, fluorescent latex particles onto the mica surface, which had been modified by LSZ adsorption. The highest latex coverage was formed on mica surfaces that had first been coated with LSZ solutions of lower pH, as a result of the increasing charge of LSZ monolayers in this condition.  相似文献   

19.
The open circuit dissolution of ionic metal oxides in mineral acids is modelled assuming that the rate is controlled by the transfer of metal ions in hydrolytic equilibrium with bulk metal ions, from the metal oxide surface to the Stern plane. The site-binding model of the double layer metal oxide/electrolyte solution is used to obtain the pH dependence of surface and Stern potentials. The nature of the active sites is discussed and their surface concentration is assumed to be proportional to suface charge σ0. Again, the site-binding model is used to detemine the pH dependence of σ0. It is thus shown that the rate order in cH+ is essentially defined by the potential dependence of the charge transfer process, for oxides with points of zero charge near neutrality that dissolve in mildly or strongly acidic solutions. The role of surface complexation is also discussed in terms of the site-binding model and the difficulties in interpreting dissolution experiments under constant external applied potential are discussed in terms of the complexity of the semiconductor oxide/electrolyte solution interfacial region in magnetite.An experimental study of the open circuit dissolution of magnetite in sulfuric acid is presented and interpreted according to the proposed model.The reductive dissolution of magnetite is modelled by extension of the Valverde-Wagner model of oxide dissolution. Experimental results are presented to demonstrate that the reductive dissolution rate of magnetite in ferrous containing solutions is controlled by the rate of electron transfer from adsorbed Fe(II) to Fe(III) surface states of magnetite.  相似文献   

20.
The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号