首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TPE-TCF, a simple TPE-derivative with red-emission was used to detect cyanide in the condition of single dispersion as well as under aggregate state. It could be found that TPE-TCF exhibited excellent fluorescent response to cyanide in both situations, and the mechanism was supposed to be the reaction between cyanide and the double bond in TPE-TCF as well as the aggregation induced emission property of the reacted TPE-TCF molecules. What's more, TPE-TCF could distinguish cyanide with other species, such as common anions and biotiol well, which indicated it as a potential indicator for cyanide with good selectivity and specificity.  相似文献   

2.
Hydrogen cyanide can be produced by the pyrolysis of man-made polymers. Cyanide has been measured in the blood of healthy adults as well as the blood of fire survivors and fatalities. In healthy subjects the blood cyanide concentration of smokers is higher than that of non-smokers. Fire survivors and fatalities have been found to have higher cyanide levels than of control groups and the levels from fire fatalities are often higher than survivors. Blood concentrations quoted as normal, toxic or fatal are highly variable in the literature. Many studies have been performed to measure the blood cyanide levels in control subjects as well as those who have been exposed to fire but the values found differ. The values for control subjects can vary from none detected to 19 μmol dm−3 while those for fire survivors range from not detected to 150 μmol dm−3 and fatalities range from not detected to 284 μmol dm−3. Analytical techniques and published data are critically reviewed.Many of the existing antidotes for cyanide poisoning are highly toxic themselves and should ideally be administered at doses proportional to the amount of cyanide a patient has received to avoid compounding damage done by cyanide intoxication. For this reason, a rapid, accurate bedside assay of blood cyanide concentration that differentiates between bound and free cyanide would represent a leap forward in the clinical management of cyanide poisoning.  相似文献   

3.
Exposure to cyanide can occur in a variety of ways, including exposure to smoke from cigarettes or fires, accidental exposure during industrial processes, and exposure from the use of cyanide as a poison or chemical warfare agent. Confirmation of cyanide exposure is difficult because, in vivo, cyanide quickly breaks down by a number of pathways, including the formation of both free and protein-bound thiocyanate. A simple method was developed to confirm cyanide exposure by extraction of protein-bound thiocyanate moieties from cyanide-exposed plasma proteins. Thiocyanate was successfully extracted and subsequently derivatized with pentafluorobenzyl bromide for GC-MS analysis. Thiocyanate levels as low as 2.5 ng mL−1 and cyanide exposure levels as low as 175 μg kg−1 were detected. Samples analyzed from smokers and non-smokers using this method showed significantly different levels of protein-bound thiocyanate (p < 0.01). These results demonstrate the potential of this method to positively confirm chronic cyanide exposure through the analysis of protein-bound cyanide in human plasma.  相似文献   

4.
Three water-soluble fluorescent probes have been specifically designed to determine free cyanide concentrations up to physiologically lethal levels, >20 microM. The probes have been designed in such a way as to afford many notable sensing features, which render them unique with regard to signal transduction, photophysical characteristics, and their application to physiological cyanide determination and safeguard. The probes are readily able to reversibly bind free aqueous cyanide with dissociation constants around 4 microM3. Subsequent cyanide binding modulates the intramolecular charge transfer within the probes, a change in the electronic properties within the probes, resulting in enhanced fluorescence optical signals as a function of increased solution cyanide concentration. The ground-state chelation with cyanide produces wavelength shifts, which also enable the probes to sense cyanide in both an excitation and emission ratiometric manner, in addition to enhanced fluorescence signaling. This has enabled a generic cyanide sensing platform to be realized that is not dependent on fluorescent probe concentration, probe photodegradation, or fluctuations in the intensity of any employed excitation sources, ideal for remote cyanide sensing applications. Further, the >600 nm fluorescence emission of the probes potentially allows for enhanced fluorescence ratiometric cyanide sensing in the optical window of tissues and blood, facilitating their use for the transdermal monitoring of cyanide for mammalian safeguard or postmortem in fire victims, both areas of active research.  相似文献   

5.
A colorimetric and fluorescent cyanide probe based on 7-(trifluoroacetamino)coumarin has been prepared. This structurally simple probe displays rapid response and high selectivity for cyanide over other common anions in the aqueous solution. The sensing of cyanide was performed via the nucleophilic attack of cyanide anion to carbonyl of the probe with a 1:1 binding stoichiometry, which could be confirmed by Job’s plot, 1H NMR, and MS studies. DFT/TDDFT calculations support that the fluorescence enhancement of the probe is mainly due to the ICT process improvement. The detection limit of the fluorescent assay for cyanide is as low as 0.3 μM in a rapid response of less than 30 s. Thus, the present probe should be applicable as a practical system for the monitoring of cyanide concentrations in aqueous samples.  相似文献   

6.
A method for the polarographic determination of cyanide as contaminant in pralidoxime mesylate (PM) formulations was developed. The volatile cyanide formed in the formulations was stabilized as tetracyanonickelate (TCN) anion complex after reaction with ammoniacal Ni(II) solution. The stable TCN anion complex (K(stb)=10(31)) was determined by anodic stripping voltammetry at the hanging mercury drop electrode (HMDE). The polarographic signal was proportional to the cyanide concentration and the high concentration of PM did not interfere. The linear range of calibration was from 1.2 to 16 mug cyanide with r=0.998. The RSD was 1.3% (n=5) for 2.4 mug cyanide and a detection limit of 0.8 mug cyanide was calculated. The proposed method is adequate as a quality control of PM formulations.  相似文献   

7.
A capillary electrophoresis microchip is used to selectively and sensitively monitor cyanide levels in both vapor (HCN((g))) and aqueous (NaCN in drinking water) phases. Laser-induced fluorescence detection is applied using a violet diode laser to monitor the fluorescent isoindole derivative formed by the reaction of cyanide with 2,3-naphthalenedicarboxaldehyde (NDA) and taurine. Air sampling of hydrogen cyanide is achieved using a miniature impinger (2 mL), giving collection efficiencies as high as 79% for a sampling rate of 1.0 L/min and a 10 s sampling time (relative standard deviation RSD: 2.7% for n = 5). Following the addition of NDA and taurine to either the vapor phase impinger sample or an aqueous drinking water sample, the NDA/cyanide derivative can be detected in just over 40 s on the microchip, giving a detection limit of 0.56 microg/L and a linear dynamic range from 0.56 microg/L-2.4 mg/L. The detection limit for hydrogen cyanide in air was determined to be 2.3 ppb (mole%). On-chip derivatization of cyanide by NDA was successful, although a 50% decrease in signal intensity was observed due to insufficient time for completion of the reaction on the microchip. A number of different interferents were examined, and only iron(II) and chlorine showed any interference due to their capability for masking the presence of cyanide by reacting with free cyanide in solution.  相似文献   

8.
Cyanide is extremely hazardous to living organisms and the environment. Owing to its wide range of applications and high toxicity, the development of functional materials for cyanide detection and sensing is highly desirable. Host–guest complexation between bis(p-phenylene)-34-crown-10 H and N-methylacridinium salt G remarkably decreases the detection limit for cyanide anions compared with that of the guest itself. The [2]pseudorotaxane selectively recognizes the cyanide anion with high optical sensitivity as a result of the nucleophilic addition of the cyanide anion at the 9-position of G . The host–guest complexation is further incorporated into supramolecular materials for the visual detection of cyanide anions, especially the detection of cellular cyanide excretion with a detection limit of 0.6 μm . This supramolecular method provides an extremely distinct strategy for the visual detection of cyanide anions.  相似文献   

9.
Yuan L  Lin W  Yang Y  Song J  Wang J 《Organic letters》2011,13(14):3730-3733
A novel highly reactive ratiometric fluorescent cyanide probe was judiciously designed based on 2-formylacrylonitrile moiety as a new cyanide reaction site. A DFT study was conducted to rationalize the extremely high reactivity nature of the ratiometric fluorescent cyanide probe.  相似文献   

10.
A new Ru(II) complex is described which serves as a luminescence lifetime-based sensor for fluoride and cyanide anions (KF = 640 000 mol-1, KCN = 430 000 mol-1). This chromophore displays observable changes in its UV-vis and steady-state luminescence spectra upon cyanide binding. Prior to cyanide addition, this complex exhibits a single-exponential lifetime (tau = 377 +/- 20 ns). With increasing cyanide concentrations, the intensity decays are composed of two exponentials: long tau (320-370 ns) and short tau (13-17 ns). The average lifetimes shorten as a function of cyanide concentration since the fractional intensity shifts from an initial dominant long lifetime component to the short lifetime component. This work represents the first example of a direct method for the luminescence lifetime-based sensing of anions.  相似文献   

11.
《Analytica chimica acta》2003,491(1):27-35
The determination of cyanide ions in water samples by room temperature phosphorescence (RTP) detection is described. The method is based on the measurement of the RTP emission of α-bromonaphthalene (BrN). The principle of the RTP cyanide determination involves the energy transfer (ET) from the BrN phosphor molecule insensitive to the presence of cyanide (acting as a donor) to a cyanide-sensitive dye (acceptor).The RTP emission spectrum of BrN overlaps significantly with the absorption spectrum of the complex formed between copper and Cadion 2B, giving rise to a non-radiative ET from the phosphor molecules to the metal complex. The sensing of cyanide ions is based on the displacement by cyanide of the copper ions from its complex with Cadion 2B (the free chelating molecule presents a low absorbance in the region of maximum emission of the BrN phosphor). An increase in the concentration of cyanide causes a decrease on the concentration of the Cadion 2B-copper complex (acceptor) with the subsequent decrease of the absorbance in the overlapping region with the RTP spectra, resulting in higher RTP emission signals measured. Both, RTP intensities and triplet lifetimes of the BrN increased with the increase of the cyanide concentration.The calibration graphs were linear up to a concentration of 500 mg l−1 cyanide and a precision of ±2 and ±0.5% for five replicates of 50 μg l−1 of cyanide has been obtained when measuring intensities and triplet lifetimes values, respectively. A detection limit of 3 μg l−1 of cyanide was achieved under optimal reaction conditions and pH 11. The use of phosphorescence measurements (low background noise signals) resulted in an important improvement on the sensitivity of the cyanide detection higher than eight times as compared to the molecular absorption spectrophotometric method for cyanide detection based on the use of Cadion 2B-copper as cyanide-indicator.Interference studies were performed with cations and anions present in drinking water samples which could affect the analytical response. Finally, the method has been successfully applied to the determination of trace levels of labile cyanide in spiked drinking water samples.  相似文献   

12.
A new selective chemodosimeter probe of cyanide anions in aqueous media was developed by the introduction of a simple glyco-conjugated o-(carboxamido) aldehyde hydrazone into an azo dye as chemodosimeter that recognizes cyanide anions among other competing anions such as acetate, dihydrogen phosphate, fluoride through reversible covalent bonding. The sensing properties of the new materials were investigated in pure water and have demonstrated a very high selectivity toward the cyanide anions. The detection limit of the new chromogenic probe was measured to be 1.29 μM which is much lower than most recently reported chromogenic probes for cyanide determination.  相似文献   

13.
Abstract

Although cyanide compounds are not incorporated in photographic processing solutions, false detection of cyanide ion is often encountered during the determination of total cyanide by various standardized methods such as ISO, ANSI and JIS. Various organic compounds and nitrogen compounds in the processing solutions were examined because of this false detection. The results suggest that hydrogen cyanide is formed by a reaction between these compounds during the distillation process for the separation of total cyanide, even though ISO, ANSI and JIS were used. The results support the following three mechanisms of cyanide formation involved in the process: (1) Hydroxylammonium salts reacts with another ingredient, formaldehyde, to form formaldoxime, which then decomposes to HCN. (2) Hydroxylammonium is oxidized by air to form nitrite ion, which subsequently reacts with organic compounds such as aminocarboxylic acids and aromatic amines (the colour-developing agent) to form HCN. (3) Potassium permanganate oxidizes aromatic amines to form HCN.  相似文献   

14.
An analytical method utilizing chemical ionization gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocyanate in plasma. Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide and simultaneous extraction of the product into ethyl acetate facilitated by a phase-transfer catalyst, tetrabutylammonium sulfate. The limits of detection for cyanide and thiocyanate were 1?μM and 50?nM, respectively. The linear dynamic range was from 10?μM to 20?mM for cyanide and from 500?nM to 200?μM for thiocyanate with correlation coefficients higher than 0.999 for both cyanide and thiocyanate. The precision, as measured by %RSD, was below 9?%, and the accuracy was within 15?% of the nominal concentration for all quality control standards analyzed. The gross recoveries of cyanide and thiocyanate from plasma were over 90?%. Using this method, the toxicokinetic behavior of cyanide and thiocyanate in swine plasma was assessed following cyanide exposure.  相似文献   

15.
Hydrogen cyanide is liberated from aqueous samples by reaction with sulphuric acid and transferred by a stream of nitrogen to a silver porous membrane electrode. Some HCN passes through the membrane into an alkaline dicyanoargentate solution; the cyanide ion produced causes a decrease in the equilibrium Ag+ concentration and the change of potential is related to the amount of cyanide in the sample. The detection limit is 3.0 ng ml?1 cyanide in the injected solution; the relative standard deviation is 0.82% for 17 ng of cyanide. Sulphide interferes (as H2S) but can be removed on a lead acetate column.  相似文献   

16.
A simple aldehyde-functionalized coumarin (1) was utilized as a doubly activated Michael acceptor type of chemodosimeter for cyanide in water. The probe has shown a selective and sensitive response to the cyanide anion over other various anions through the Michael addition reaction of the cyanide to 1. When cyanide anions were added, the prominent color changes as well as fluorescence changes of 1 were observed so that millimolar concentrations of cyanides were detectable by the naked eye.  相似文献   

17.
A continuous system for the determination of free and complex cyanides has been developed. Hydrogen cyanide is released in an acidic solution in a counter-current system operated by a peristaltic pump, absorbed in dilute sodium hydroxide and then fed into the amperometric detector with a cylindrical silver flow-through electrode. The parameters affecting the release and absorption of cyanide, as well as the electrode response and sensitivity, are described. Differentiation between total cyanide and strongly bound metal cyanide complexes is achieved by u.v. decomposition of the complexes.  相似文献   

18.
Taking advantage of the special nucleophilicity of cyanide, a new simple colorimetric chemosensor has been synthesised. This allows a deprotonation reaction to monitoring the cyanide. With the addition of CN? to the chemosensor aqueous solution, which could induce a change in the solution colour from yellowish to deep yellow, while no colour change could be observed in the presence of other hackneyed anions, by which CN? can be distinguished from other anions immediate with the naked eye. At the same time, a fluorescence quenching was implemented upon adding cyanide into the chemosensor aqueous solution. The absorption spectra detection limits of the chemosensor for cyanide was 5.35 × 10?8 M and the fluorescence spectra detection limit was 2.63 × 10?8 M. The cyanide test strips based on the chemosensor could serve as a convenient cyanide test kits. Furthermore, the chemosensor was successfully applied to detect cyanide in sprouting potatoes.  相似文献   

19.
Curtis AJ  Grayless CC  Fall R 《The Analyst》2002,127(11):1446-1449
A new method to simultaneously detect cyanide and carbonyl compounds arising from cyanogenic glycosides in plants is described. A portable gas chromatograph.housing two detectors using a single carrier gas is employed to measure the carbonyl compounds (photoionization detector) and cyanide as its cyanogen chloride derivative (electron capture detector) from the headspace of a plant sample. This method affords in-field, rapid screening of plants to determine cyanogenicity. Good agreement was seen between this method for cyanide determination and two traditional field cyanide test kits. Detection of both the cyanide and the carbonyl compound(s) allows for confirmation of the presence of cyanogenic glycosides and eliminates the problem of false positives often seen in traditional cyanide test kits. Gas phase limits of detection for cyanide, acetone, butanone, and benzaldehyde were 69, 41, 105, and 0.39 parts per billion by volume (ppbv), respectively, allowing sensitive detection of cyanogenic glycoside breakdown products. The method's utility for screening cyanogenic plants is demonstrated, and it should be useful for screening cyanogenic foodstuffs to determine suitability for consumption.  相似文献   

20.
Three structurally simple thiourea derivatives 1-3 were prepared, and their chromogenic behaviors toward various anions were investigated in aqueous solution. Among them 1 showed good sensitivity and selectivity for cyanide ion and also can distinguish it from other anions by different color changes. Besides that, the receptor 1 has a sensitive detection limit (1.27 μM) for cyanide ion accordingly it can be used as a colorimetric sensor for the determination of cyanide ion. The use of the test strip of sensor 1 to detect cyanide ion was also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号