首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of polystyrene with hydroxyl radicals, generated by the photolysis (λ > 300 nm) of H2O2, has been studied at 25° in dichloromethane solution, both under vacuum conditions and in presence of O2. Spectroscopic analyses suggest the presence of phenols and hydroxymucondialdehydes (when O2 is present) among the reaction products, indicating that OH addition occurs at the phenyl groups of the polymer. By comparison with initiated oxidation reactions under the same conditions, it is concluded that the OH radicals undergo mainly addition reactions. A mechanism has been produced to account for the products. The significance of OH addition reactions in the oxidation of polystyrene is considered, the OH radicals being produced by hydroperoxide decomposition during oxidation, and the products having been previously identified as containing mucondialdehydes.  相似文献   

2.
Benzyl alcohol (BA) is present in indoor atmospheres, where it reacts with OH radicals and undergoes further oxidation. A theoretical study is carried out to elucidate the reaction mechanism and to identify the main products of the oxidation of BA that is initiated by OH radicals. The reaction is found to proceed by H‐abstraction from the CH2 group (25 %) and addition to the ipso (60 %) and ortho (15 %) positions of the aromatic ring. The BA–OH adducts react further with O2 via the bicyclic radical intermediates—the same way as for benzene—forming mainly 3‐hydroxy‐2‐oxopropanal and butenedial. If NOx is low, the bicyclic peroxy radicals undergo intramolecular H‐migration, forming products containing OH, OOH, and CH2OH/CHO functional groups, and contribute to secondary organic aerosol (SOA) formation.  相似文献   

3.
由于脂质过氧化反应(LPO)是导致人体疾病(如肝炎、肝硬化、动脉硬化、脑溢血等)的主要原因, 而黄酮类化合物是一类很强的过氧化反应抑制剂, 因此有必要研究其化学结构与过氧化反应的关系及其抗氧化机理.本文选择α-羟乙基过氧自由基为脂质过氧自由基的模拟物, 采用脉冲辐解方法研究了乙醇溶液中4种典型的黄酮类化合物(槲皮素、芦丁、儿茶素以及黄岑甙)与α-羟乙基过氧自由基的反应动力学, 测得其反应活性顺序为:芦丁>槲皮素>黄岑甙>儿茶素. 同时以黄酮体和邻苯二酚为黄酮类化合物不同结构特征的模型化合物, 用脉冲辐解法测得二者与α-羟乙基过氧自由基的反应速率常数分别为(1.7±0.1)×106和(2.9±0.1)×105 mol-1·dm3·s-1.实验结果表明, 在黄酮类化合物与α-羟乙基过氧自由基的反应中, A环C5位的羟基, C环C2=C3或B-C环的大π键和B环邻二羟基共存时清除α-羟乙基过氧自由基活性最好, 而且C环C2=C3或B-C环大π键的清除活性好于B环邻二羟基, 同时C环是否含有C3-醣甙结构对清除作用没有明显影响. 因此我们推测在黄酮类化合物抑制脂质过氧化反应过程中, 起主要作用的是C环C2=C3或B-C环的大π键与脂质过氧自由基的双键加成反应.  相似文献   

4.
Model systems, based on aqueous solutions containing isoflurane (CHF(2)OCHClCF(3)) as an example, have been studied in the presence and absence of methionine (MetS) to evaluate reactive fates of halogenated hydroperoxides and peroxyl and alkoxyl radicals. Primary peroxyl radicals, CHF(2)OCH(OO*)CF(3), generated upon 1-e-reduction of isoflurane react quantitatively with MetS via an overall two-electron oxidation mechanism to the corresponding sulfoxide (MetSO). This reaction is accompanied by the formation of oxyl radicals CHF(2)OCH(O*)CF(3) that quantitatively rearrange by a 1,2-hydrogen shift to CHF(2)OC*(OH)CF(3). According to quantum-chemical calculations, this reaction is exothermic (DeltaH = -5.1 kcal/mol) in contrast to other potentially possible pathways. These rearranged CHF(2)OC*(OH)CF(3) radicals react further via either of two pathways: (i) direct addition of oxygen or (ii) deprotonation followed by fluoride elimination resulting in CHF(2)OC(O)CF(2)*. Route i yields the corresponding CHF(2)OC(OO*)(OH)CF(3) peroxyl radicals, which eliminate H+/O(2)*-. The resulting ester, CHF(2)OC(O)CF(3), hydrolyzes further, accounting for the formation of HF, trifluoroacetic acid, and formic acid with a contribution of 45% and 80% in air- and oxygen-saturated solutions, respectively. A competitive pathway (ii) involves the reactions of the secondary peroxyl radicals, CHF(2)OC(O)CF(2)OO*. The two more stable of the three above mentioned peroxyl radicals can be distinguished through their reaction with MetS. Although the primary CHF(2)OCH(OO*)CF(3) oxidizes MetS to MetSO in a 2-e step, the majority of the secondarily formed CHF(2)OC(O)CF(2)OO* reacts with MetS via a 1-e transfer mechanism, yielding CHF(2)OC(O)CF(2)OO-, which eventually suffers a total breakup into CHF(2)O- + CO(2) + CF(2)O. Quantum-chemical calculations show that this reaction is highly exothermic (DeltaH = -81 kcal/mol). In air-saturated solution this pathway accounts for about 35% of the overall isoflurane degradation. Minor products (10% each), namely, oxalic acid and carbon monoxide originate from oxyl radicals, CHF(2)OC(O)CF(2)O* and CHF(2)OCH(O*)CF(3). An isoflurane-derived hydroperoxide CHF(2)OCH(OOH)CF(3) in high yield was generated in radiolysis of air-saturated solutions containing isoflurane and formate either via a H-atom abstraction from formate by the isoflurane-derived peroxyl radicals or by their cross-termination reaction with superoxide O(2)*-. CHF(2)OCH(OOH)CF(3), is an unstable intermediate whose multistep hydrolysis is giving H(2)O(2) + 2HF + HC(O)OH + CF(3)CH(OH)(2). In the absence of MetS, about 55% of CHF(2)OCH(OO*)CF(3) undergo termination via the Russell mechanism and 27% are involved in cross-termination with superoxide (O(2)*-) and peroxyl radicals derived from t-BuOH (used to scavenge *OH radicals). The remaining 18% of the primary peroxyl radicals undergo termination via formation of alkoxyl radicals, CHF(2)OCH(O*)CF(3).  相似文献   

5.
Hydroxyaryl alkyl tellurides are effective antioxidants both in organic solution and aqueous biphasic systems. They react by an unconventional mechanism with ROO. radicals with rate constants as high as 107 M ?1 s?1 at 303 K, outperforming common phenols. The reactions proceed by oxygen atom transfer to tellurium followed by hydrogen atom transfer to the resulting RO. radical from the phenolic OH. The reaction rates do not reflect the electronic properties of the ring substituents and, because the reactions occur in a solvent cage, quenching is more efficient when the OH and TeR groups have an ortho arrangement. In the presence of thiols, hydroxyaryl alkyl tellurides act as catalytic antioxidants towards both hydroperoxides (mimicking the glutathione peroxidases) and peroxyl radicals. The high efficiency of the quenching of the peroxyl radicals and hydroperoxides could be advantageous under normal cellular conditions, but pro‐oxidative (thiol depletion) when thiol concentrations are low.  相似文献   

6.
Degradation of ethyl tert‐butyl ether (ETBE) with UV/TiO2 was studied by solid‐phase microextraction and gas chromatography‐mass spectrometry. The complete removal of 0.1 g L?1 of ETBE was achieved after 20 h of treatment. Factors such as pH of the system, catalyst and substrate concentration, and the presence of anions influenced the degradation rate. Establishment of the degradation pathway was made possible by a thorough analysis of the reaction mixture, which identified the main intermediate products generated. The possible degradation pathways were proposed and discussed in this research. The attack on the C–H bond in ETBE by ·OH forms an alkyl radical, which consequently produces a peroxyl radical upon reaction with oxygen. Peroxyl radicals react with one another and produce an alkoxy radical. The β‐bond fragmentation of the alkoxy radical produces different intermediates.  相似文献   

7.
Cyclic nitroxides (>NO*) are stable radicals of diverse size, charge, lipophilicility, and cell permeability, which provide protection against oxidative stress via various mechanisms including SOD-mimic activity, oxidation of reduced transition metals and detoxification of oxygen- and nitrogen-centered radicals. However, there is no agreement regarding the reaction of nitroxides with peroxyl radicals, and many controversies in the literature exist. The question of whether nitroxides can protect by scavenging peroxyl radicals is important because peroxyl radicals are formed in biological systems. To further elucidate the mechanism(s) underlying the antioxidative effects of nitroxides, we studied by pulse radiolysis the reaction kinetics of piperidine, pyrrolidine, and oxazolidine nitroxides with several alkyl peroxyl radicals. It is demonstrated that nitroxides mainly reduce alkyl peroxyl radicals forming the respective oxoammonium cations (>N+=O). The most efficient scavenger of peroxyl radicals is 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), which has the lowest oxidation potential among the nitroxides tested in the present study. The rate constants of peroxyl reduction are in the order CH2(OH)OO*>CH3OO*>t-BuOO*, which correlate with the oxidation potential of these peroxyl radicals. The rate constants for TPO vary between 2.8x10(7) and 1.0x10(8) M-1 s-1 and for 3-carbamoylproxyl (3-CP) between 8.1x10(5) and 9.0x10(6) M-1 s-1. The efficacy of protection of nitroxides against inactivation of glucose oxidase caused by peroxyl radicals was studied. The results demonstrate a clear correlation between the kinetic features of the nitroxides and their ability to inhibit biological damage inflicted by peroxyl radicals.  相似文献   

8.
The reaction mechanism for o‐xylene with OH radical and O2 was studied by density functional theory (DFT) method. The geometries of the reactants, intermediates, transition states, and products were optimized at B3LYP/6‐31G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single‐point calculations for all the stationary points were carried out at the B3LYP/6‐311++G(2df,2pd) level using the B3LYP/6‐31G(d,p) optimized geometries. Reaction energies for the formation of the aromatic intermediate radicals have been obtained to determine their relative stability and reversibility, and their activation barriers have been analyzed to assess the energetically favorable pathways to propagate the o‐xylene oxidation. The results of the theoretical study indicate that OH addition to o‐xylene forms ipso, meta, and para isomers of o‐xylene‐OH adducts, and the ipso o‐xylene adduct is the most stable among these isomers. Oxygen is expected to add to the o‐xylene‐OH adducts forming o‐xylene peroxy radicals. And subsequent ring closure of the peroxyl radicals to form bicyclic radicals. With relatively low barriers, isomerization of the o‐xylene bicyclic radicals to more stable epoxide radicals likely occurs, competing with O2 addition to form bicyclic peroxy radicals. The study provides thermochemical data for assessment of the photochemical production potential of ozone and formation of toxic products and secondary organic aerosol from o‐xylene photooxidation. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
10.
The kinetic parameters of the formation of single-strand breaks (ssb) induced by OH radicals in presence of oxygen and that of the decay of peroxyl radicals of the polynucleotide have been found to be very similar. The conclusion that the decay of the peroxyl radicals is involved in the rate-determining step of ssb formation is confirmed for poly(U) by a study of the effect of ethanol on ssb formation under conditions of laser pulse excitation. The kinetics of the formation of ssb for poly(U) is complex but is consistent with a first order followed by more complex reactions. This kinetics is compatible with a pathway to ssb formation assuming H abstraction from the sugar moiety by base peroxyl radicals as the rate-determining step in the beginning of the overall reaction.  相似文献   

11.
The autoxidation of methyl linoleate in benzene at 37 degrees C by peroxyl radicals was found to generate hydroxyl radicals (.OH) from a secondary oxidation mechanism. The yield of hydroxyl radicals (approximately 2%) was determined by trapping these reactive radicals with benzene to give phenol. We propose that alphaC-H hydrogen abstraction from lipid hydroperoxides, the main autoxidation products, is the source of hydroxyl radicals.  相似文献   

12.
The photochemistry of 9-xanthenyl radicals produced by pulse radiolysis of xanthene in halocarbon was studied by means of a successive laser flash photolysis in the presence and absence of oxygen. In deaerated solutions rapid (during 6 ns laser pulse) and permanent photobleaching due to chlorine atom transfer from solvents to the excited 9-xanthenyl radical was observed with quantum yields of 0.04 and 0.26 in 1,2-dichloroethane and CCl4, respectively. In the solutions containing oxygen, equilibrium between 9-xanthenyl radicals and peroxyl radicals was established and recovery of the photobleached 9-xanthenyl radicals was observed, which was accounted for by dissociation of peroxyl radicals. The whole reaction scheme of formation and decay of 9-xanthenyl radicals in CCl4 is discussed based on the kinetic simulations.  相似文献   

13.
The mass spectra of furanic and pyranic anomers of thymidine as well as those of acetates and bromohydrines of these four molecules are studied and compared. The stability of molecular ions is correlated with the chemical stability of these copmpounds. Molecular ions of β forms are more stable than those of α forms. The instability of the bromohydrines molecular ions is such that they are only observed for β furanic anomers. The eliminmation of the ·CH2OH or ·CH2OAc radical is noterd only for the furanic compound. The cleavage of CH2O in the β furanic substances is correleated with the steric vicinity of the base and the sugar 5′ hydroxide. The ions[BH ? Ch?CH2]+ and those resulting from this rearrangement and cleavage of sugar moiety, are enhanced in the case of furanic forms. After rupture of the N-glycosidic bon, the [B + H]+˙ and [B + 2H]+ ions resulting from the base and [S]+ are related to the molecular stereochemistry. The eliminationof one water molecular(or acetic acid) is easier in a sixs membered ring(pyranic). The concerted elimination of two water molecules (or acetic acid), more important in the furanic form, enables us to establish a ring cleavage mechanism which gives an ion with a conjugated aliphaticf structure; the pyranic form gives an aromatic cyclic ion in two steps.  相似文献   

14.
The oxidation process of the cyclic acetal sorbitylfurfural (SF) has been thoroughly examined from the kinetic, spectroscopic and theoretical point of view. Oxidation has been initiated by the radiolitically produced OH radical in the presence of variable oxygen amounts. Two competing reaction pathways are evidenced which lead to quite different products, although they do not affect the acetal ring integrity. The peroxidation of the hydroxylated furanic ring (k 4=(6.1±0.9)×108 M−1 s−1) maintains the ring structurevia HO2 elimination (k 6=(1.9±0.4)×105 s−1). Unlike that, the peroxidation of the pseudo-allylic radical (k 5=(1.9±0.9)×109 M−1 s−1), formedvia β-cleavage, fixes the destructured intermediate, leading to a tetroxide, which slowly decomposes through a Russell mechanism (k 8=(2.3±0.6)×102 s−1). It is confirmed that the steady state concentration of the tetroxide is very low, which suggests a molar absorption coefficient for it around 1.2×104 M−1 cm−1 at 265 nm. The end products of the latter pathway have been characterized as carboxylic and butenald-sorbitol derivatives. The kinetic and spectral data of every step of the process have been fitted by the above outlined mechanism. The energetics of the mechanism has been detailed byab initio computations as well, carrying further substantiation to it. Semi-empirical calculations were also employed to describe the spectral properties of each intermediate.  相似文献   

15.
Whenever free radicals are formed, independent of whether this occurs thermally, is induced by UV or ionizing irradiation, or takes place in redox reactions, they are converted rapidly into the corresponding peroxyl radicals in the presence of oxygen. Peroxyl radical reactions in aqueous environments are observed not only in aquatic systems (e.g., rivers, lakes and oceans) but also in the living cell and to a considerable degree even in the atmosphere (in water droplets). The peroxyl radical chemistry occurring in this medium is often very different from that observed in the gas phase or in organic solvents. In spite of the great importance of these reactions in medicine (for example in anti-cancer irradiation therapy and ischaemia) there have been comparatively few studies of peroxyl reactions in aqueous media. Radiation-chemical techniques such as pulse radiolysis offer the best means for carrying out such studies, so that it is not surprising that the majority of the information available in this area has been obtained with the help of radiation-chemical methods. The radiation chemistry of water can be con trolled in such a manner that the main products are ˙OH radicals (90 % yield), which react with substrate molecules to give substrate radicals and in the presence of oxygen to give substrate peroxyl radicals. The experimental conditions can also be varied in such a way that HO/O radicals can be formed in 100 % yield and caused to react with substrates. We therefore have a simple access to these intermediates, which are extremely important in biological systems. A detailed product analysis, supported by kinetic studies carried out with the help of pulse radiolysis, has been used to clarify the chemistry of a series of peroxyl radicals, so that sufficient material is now available to justify a review of the variety of the peroxyl radical reactions studied by means of radiation-chemical methods. A more general survey of the physical properties of the peroxyl radicals and their unimolecular and bimolecular reactions will be followed by a discussion of selected examples of various classes of substance. Because of the great biological importance of radical-induced DNA damage this area will also be treated briefly.  相似文献   

16.
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed.  相似文献   

17.
A detailed chemical kinetic model has been developed for supercritical water oxidation (SCWO) of methylamine, CH3NH2, providing insight into the intermediates and final products formed in this process as well as the dominant reaction pathways. The model was adapted from previous mechanisms, with a revision of the peroxyl radical chemistry to include imine formation, which has recently been identified as the dominant gas-phase pathway in amine oxidation. The developed model can reproduce previous experimental data on methylamine consumption and major product formation to reasonable accuracy, although with deficiencies in describing the induction time. Our simulations indicate that oxidation of the CH2NH2 radical to methanimine, CH2NH, is the major channel in methylamine SCWO, with subsequent hydrolysis of CH2NH providing the experimentally observed reaction products ammonia and formaldehyde. Integral-averaged reaction rates were used to identify major reaction pathways, and a first-order sensitivity analysis indicated that the concentration of CH3NH2 is most sensitive to OH radical kinetics. Overall, this work clarifies the importance of imine chemistry in the oxidation of nitrogen-containing compounds and indicates that they are necessary to model these compounds in SCWO processes.  相似文献   

18.
The apparently unpredictable behaviour of β-carotene in the supplementation of the diet of smokers is discussed in the light of the reactions of peroxyl radicals with β-carotene in the absence of oxygen. The decay of tert-butylperoxyl radicals in the presence of β-carotene was studied at ambient temperature in non-polar solvents by ESR spectroscopy. The primary reaction in the absence of oxygen is interpreted as a spin-trapping effect of a peroxyl radical by β-carotene producing an intermediate labile free radical, which disappears after recombination with a second tert-butylperoxyl radical. The result is the transformation of β-carotene to a diamagnetic compound with two peroxy bonds. In the presence of chelating transition metals with unpaired d-electrons as electron donors the peroxy group of the oxidized β-carotene can be split to alkoxyl free radicals. The primary attack of tert-butylperoxyl radicals is completely inhibited in the presence of vitamin E followed by production of free aryloxy radicals and the presence of oxygen has no significant effect on this reaction. Spin-trapping of peroxyl radicals by the double bond of vitamin A leads to its oxidation in the absence of vitamin E. Transition metal ions such as Co, Cr, Fe, and Mn, known to be present in the aerosol of cigarette smoke, homolyse the peroxyl bonds of peroxidised β-carotene, which results in cell damage.  相似文献   

19.
Reactions of peroxyl radicals and peroxynitrite with o-vanillin (2-hydroxy 3-methoxy benzaldehyde), a positional isomer of the well-known dietary compound vanillin, were studied to understand the mechanisms of its free radical scavenging action. Trichloromethylperoxyl radicals (CCl3O 2 · ) were used as model peroxyl radicals and their reactions with o-vanillin were studied using nanosecond pulse radiolysis technique with absorption detection. The reaction produced a transient with a bimolecular rate constant of approx. 105 M−1s−1, having absorption in the 400–500 nm region with a maximum at 450 nm. This spectrum looked significantly different from that of phenoxyl radicals of o-vanillin produced by the one-electron oxidation by azide radicals. The spectra and decay kinetics suggest that peroxyl radical reacts with o-vanillin mainly by forming a radical adduct. Peroxynitrite reactions with o-vanillin at pH 6.8 were studied using a stopped-flow spectrophotometer. o-Vanillin reacts with peroxynitrite with a bimolecular rate constant of 3 × 103 M−1s−1. The reaction produced an intermediate having absorption in the wavelength region of 300–500 nm with a absorption maximum at 420 nm, that subsequently decayed in 20 s with a first-order decay constant of 0.09 s−1. The studies indicate that o-vanillin is a very efficient scavenger of peroxynitrite, but not a very good scavenger of peroxyl radical. The reactions take place through the aldehyde and the phenolic OH group and are significantly different from other phenolic compounds.  相似文献   

20.
Helical shaped fused bis-phenothiazines 1 – 9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5 – 9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1 – 4 , lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1 – 9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号