首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
The penultimate step in the biosynthesis of riboflavin is catalyzed by lumazine synthase. Three metabolically stable analogues of the hypothetical intermediate proposed to arise after phosphate elimination in the lumazine synthase-catalyzed reaction were synthesized and evaluated as lumazine synthase inhibitors. All three intermediate analogues were inhibitors of Mycobacterium tuberculosis lumazine synthase, Bacillus subtilis lumazine synthase, and Schizosaccharomyces pombe lumazine synthase, while one of them proved to be an extremely potent inhibitor of Escherichia coli riboflavin synthase with a Ki of 1.3 nM. The crystal structure of M. tuberculosis lumazine synthase in complex with one of the inhibitors provides a model of the conformation of the intermediate occurring immediately after phosphate elimination, supporting a mechanism in which phosphate elimination occurs before a conformational change of the Schiff base intermediate toward a cyclic structure.  相似文献   

2.
Lumazine synthase and riboflavin synthase catalyze the last two steps in the biosynthesis of riboflavin. To obtain structural and mechanistic probes of these two enzymes, as well as inhibitors of potential value as antibiotics, a sulfur analogue of the pyrimidine substrate of the lumazine synthase-catalyzed reaction and product of the riboflavin synthase-catalyzed reaction was designed. Facile syntheses of the S-nucleoside 5-amino-6-(D-ribitylthio)pyrimidine-2,4(1H,3H)-dione hydrochloride (15) and its nitro precursor 5-nitro-6-(D-ribitylthio)pyrimidine-2,4(1H,3H)-dione (14) are described. These compounds were tested against lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. Compounds 14 and 15 were found to be inhibitors of both riboflavin synthase and lumazine synthase. Compound 14 is an inhibitor of Bacillus subtilis lumazine synthase (Ki 26 microM), Schizosaccharomyces pombe lumazine synthase (Ki 2.0 microM), Mycobacterium tuberculosis lumazine synthase (Ki 11 microM), Escherichia coli riboflavin synthase (Ki 2.7 microM), and Mycobacterium tuberculosis riboflavin synthase (Ki 0.56 muM), while compound 15 is an inhibitor of B. subtilis lumazine synthase (Ki 2.6 microM), S. pombe lumazine synthase (Ki 0.16 microM), M. tuberculosis lumazine synthase (Ki 31 microM), E. coli riboflavin synthase (Ki 47 microM), and M. tuberculosis riboflavin synthase (Ki 2.5 microM).  相似文献   

3.
The last two steps in the biosynthesis of riboflavin, an essential metabolite that is involved in electron transport, are catalyzed by lumazine synthase and riboflavin synthase. To obtain structural probes and inhibitors of these two enzymes, two ribityllumazinediones bearing alkyl phosphate substituents were synthesized. The synthesis involved the generation of the ribityl side chain, the phosphate side chain, and the lumazine system in protected form, followed by the simultaneous removal of three different types of protecting groups. The products were designed as intermediate analogue inhibitors of lumazine synthase that would bind to its phosphate-binding site as well as its lumazine binding site. Both compounds were found to be effective inhibitors of Bacillus subtilislumazine synthase as well as Escherichia coli riboflavin synthase. Molecular modeling of the binding of one of the two compounds provided a structural explanation for how these compounds are able to effectively inhibit both enzymes. In phosphate-free buffer, the phosphate moieties of the inhibitors were found to contribute positively to their binding to Mycobacterium tuberculosis lumazine synthase, resulting in very potent inhibitors with Ki values in the low nanomolar range. The additional carbonyl in the dioxolumazine system versus the purinetrione system was found to make a positive contribution to its binding to E. coli riboflavin synthase.  相似文献   

4.
Lumazine synthase and riboflavin synthase catalyze the last two steps in the biosynthesis of riboflavin, an essential metabolite that is involved in electron transport processes. To obtain structural probes of these two enzymes, as well as inhibitors of potential value as antibiotics, a series of ribitylpurinetriones bearing alkyl phosphate and alpha,alpha-difluorophosphonate substituents were synthesized. Since the purinetrione ring system and the ribityl hydroxyl groups can be alkylated, the synthesis required the generation of these two moieties in protected form before the desired alkylation reaction could be carried out. These substances were designed as intermediate analogue inhibitors of lumazine synthase that would bind to its phosphate-binding site. All of the compounds were found to be effective inhibitors of both Bacillus subtilis lumazine synthase as well as Escherichia coli riboflavin synthase. Molecular modeling of the binding of 3-(1,3,7,9-tetrahydro-9-D-ribityl-2,6,8-trioxopurin-7-yl)propane 1-phosphate provided a structural explanation for how these compounds are able to effectively inhibit both enzymes. Interestingly, the enzyme kinetics of these new compounds in comparison with the parent purinetrione demonstrated unexpectedly that the phosphate and phosphonate substituents contributed negatively to the binding. A possible explanation for these effects on lumazine synthase would be that the inorganic phosphate in the assay buffer competes with the substituted purinetriones for binding to the enzyme. This would be consistent with the observed increase in K(m) of the 3,4-dihydroxybutanone-4-phosphate substrate from 5.2 microM in Tris buffer or from 6.7 microM in MOPS buffer to 50 microM in phosphate buffer when tested on Bacillus subtilis lumazine synthase. However, when tested in Tris buffer vs Mycobacterium tuberculosis lumazine synthase, three of the phosphate inhibitors displayed inhibition constants in the 4-5 nM range, indicating that they are much more potent than the parent purinetrione. Under these conditions, the phosphate moieties of the inhibitors do contribute positively to their binding. The alpha,alpha-difluorophosphonate analogue, which is expected to have enhanced metabolic stability relative to the phosphates, was also found to be an inhibitor of Mycobacterium tuberculosis lumazine synthase with a K(i) of 60 nM.  相似文献   

5.
Several analogues of a hypothetical intermediate in the reaction catalyzed by lumazine synthase were synthesized and tested as inhibitors of both Bacillus subtilis lumazine synthase and Escherichia coli riboflavin synthase. The new compounds were designed by replacement of a two-carbon fragment of several 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors with an amide linkage that was envisioned as an analogue of a Schiff base moiety of a hypothetical intermediate in the enzyme-catalyzed reaction. The incorporation of the amide group led to an unexpected reversal in selectivity for inhibition of lumazine synthase vs riboflavin synthase. Whereas the parent 5-phosphonoalkyl-6-D-ribitylaminopyrimidinediones were lumazine synthase inhibitors and did not inhibit riboflavin synthase, the amide-containing derivatives inhibited riboflavin synthase and were only very weak or inactive as lumazine synthase inhibitors. Molecular modeling of inhibitor-lumazine synthase complexes did not reveal a structural basis for these unexpected findings. However, molecular modeling of one of the inhibitors with E. coli riboflavin synthase demonstrated that the active site of the enzyme could readily accommodate two ligand molecules.  相似文献   

6.
Lumazine synthase catalyzes the penultimate step in the biosynthesis of riboflavin, while riboflavin synthase catalyzes the last step. O-Nucleoside, S-nucleoside, and N-nucleoside analogues of hypothetical lumazine biosynthetic intermediates have been synthesized in order to obtain structure and mechanism probes of these two enzymes, as well as inhibitors of potential value as antibiotics. Methods were devised for the selective cleavage of benzyl protecting groups in the presence of other easily reduced functionality by controlled hydrogenolysis over Lindlar catalyst. The deprotection reaction was performed in the presence of other reactive functionality including nitro groups, alkenes, and halogens. The target compounds were tested as inhibitors of lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. In general, the S-nucleosides and N-nucleosides were more potent than the corresponding O-nucleosides as lumazine synthase and riboflavin synthase inhibitors, while the C-nucleosides were the least potent. A series of molecular dynamics simulations followed by free energy calculations using the Poisson-Boltzmann/surface area (MM-PBSA) method were carried out in order to rationalize the results of ligand binding to lumazine synthase, and the results provide insight into the dynamics of ligand binding as well as the molecular forces stabilizing the intermediates in the enzyme-catalyzed reaction.  相似文献   

7.
Reduction of 5-nitro-6-D-ribitylaminouracil (9) afforded 5-amino-6-D-ribitylaminouracil (1), which reacted with ethyl chloroformate to yield 5-ethylcarbamoyl-6-D-ribitylaminouracil (12). The latter compound was cyclized to 9-D-ribityl-1,3,7-trihydropurine-2,6,8-trione (13), which was found to be a relatively potent inhibitor of both Escherichia coli riboflavin synthase (K(i) 0.61 microM) and Bacillus subtilis lumazine synthase (K(i) 46 microM). Molecular modeling of the lumazine synthase-inhibitor complex indicated the possibility for hydrogen bonding between the Lys135 epsilon-amino group of the enzyme and both the 8-keto group and the 4'-hydroxyl group of the ligand. A bisubstrate analogue of the riboflavin synthase-catalyzed reaction, 1,4-bis[1-(9-D-ribityl-1,3,7-trihydropurine-2,6,8-trionyl)]butane (18), was also synthesized using a similar route and was found to be inactive as an inhibitor of both riboflavin synthase and lumazine synthase.  相似文献   

8.
Lumazine synthase and riboflavin synthase catalyze the last two steps in the biosynthesis of riboflavin, a vitamin that is involved in many critical biochemical reactions that are essential for the maintenance of life. To obtain inhibitors and structural probes that could be useful in studying the structures of bound reaction intermediates, the ribitylamino N-H moiety of the lumazine synthase substrate was replaced by CH(2) and N-CH(3) groups. The CH(2) replacement unexpectedly and completely abolished the affinity for lumazine synthase, thus revealing a critical, yet unexplained, role of the ribitylamino N-H moiety in conferring affinity for the enzyme. In contrast, the N-CH(3) replacement resulted in an inhibitor of both lumazine synthase and riboflavin synthase. Replacement of the ribitylamino N-H moiety with epimeric C-F moieties led to inhibition of lumazine synthase and riboflavin synthase when combined with the replacement of the 5-amino group with a nitro substituent.  相似文献   

9.
Mycobacterium tuberculosis FabH initiates type II fatty acid synthase-catalyzed formation of the long chain (C(16)-C(22)) acyl-coenzyme A (CoA) precursors of mycolic acids, which are major constituents of the bacterial cell envelope. Crystal structures of M. tuberculosis FabH (mtFabH) show the substrate binding site to be a buried, extended L-shaped channel with only a single solvent access portal. Entrance of an acyl-CoA substrate through the solvent portal would require energetically unfavorable reptational threading of the substrate to its reactive position. Using a class of FabH inhibitors, we have tested an alternative hypothesis that FabH exists in an "open" form during substrate binding and product release, and a "closed" form in which catalysis and intermediate steps occur. This hypothesis is supported by mass spectrometric analysis of the product profile and crystal structures of complexes of mtFabH with these inhibitors.  相似文献   

10.
The mechanism of the taxadiene synthase-catalyzed cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP, 7) to taxadiene (5) is proposed to proceed through a verticillen-12-yl carbocation intermediate (8) that undergoes an 11 --> 7 proton transfer leading to formation of the C ring. The substrate analogue 6-fluoroGGPP (17) was synthesized to elucidate the stereochemistry of the putative verticillenyl intermediate. It was expected that the inductive electron-withdrawing effect of the fluoro substituent would prevent the critical proton transfer to the Delta(7) double bond and thereby derail the cyclization at the bicyclic stage. Incubation of the fluoro analogue with recombinant taxadiene synthase yielded a mixture of three major and two minor fluoro diterpenes according to GC/MS analyses. The three major products were identified as the exocyclic, endocyclic, and 4(20)-methylene 7-fluoroverticillenes, i.e., Delta(3,7,12 (18)), Delta(3,7,12), and Delta(4(20),7,11) isomers (22, 23, and 24) on the basis of (1)H NMR analyses and comparisons with the parent bicyclic diterpenes. The H1beta, H11alpha (1S,11R) configurations at the bridgehead positions of 22 were established by means of NOE experiments and CD spectra. The absolute configuration of (+)-verticillol (4) was revised after the anomalous dispersion X-ray analysis of (+)-verticillol p-iodobenzoate. Of particular note, all absolute configurations of verticillane diterpenes in the literature should be reversed. This work affords compelling evidence supporting the H11alpha (11R) stereochemistry of the verticillen-12-yl(+) ion intermediate in the taxadiene synthase-catalyzed reaction and illustrates the capability of vinyl fluoro analogues to intercept complex cyclization cascades.  相似文献   

11.
A series of 6-carboxyalkyl and 6-phosphonoxyalkyl derivatives of 7-oxo-8-D-ribityllumazine were synthesized as inhibitors of both Escherichia coli riboflavin synthase and Bacillus subtilis lumazine synthase. The compounds were designed to bind to both the ribitylpurine binding site and the phosphate binding site of lumazine synthase. In the carboxyalkyl series, maximum activity against both enzymes was observed with the 3'-carboxypropyl compound 22. Lengthening or shortening the chain linking the carboxyl group to the lumazine by one carbon resulted in decreased activity. In the phosphonoxyalkyl series, the 3'-phosphonoxypropyl compound 33 was more potent than the 4'-phosphonoxybutyl derivative 39 against lumazine synthase, but it was less potent against riboflavin synthase. Molecular modeling suggested that the terminal carboxyl group of 6-(3'-carboxypropyl)-7-oxo-8-D-ribityllumazine (22) may bind to the side chains of Arg127 and Lys135 of the enzyme. A hypothetical molecular model was also constructed for the binding of 6-(2'-carboxyethyl)-7-oxolumazine (15) in the active site of E. coli riboflavin synthase, which demonstrated that the active site could readily accommodate two molecules of the inhibitor.  相似文献   

12.
6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyzes the condensation of 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate, affording the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine. Single turnover experiments monitored by multiwavelength photometry were performed with the recombinant lumazine synthase of Bacillus subtilis. Mixing of the enzyme with the pyrimidine type substrate is conducive to a hypsochromic shift as well as a decrease in absorbance of the heterocyclic substrate; the rate constant for that reaction is 0.02 s(-1) microM(-1). Rapid mixing of the complex between enzyme and pyrimidine type substrate with the second substrate, 3,4-dihydroxy-2-butanone 4-phosphate, is followed by the appearance of an early optical transient characterized by an absorption maxima at 330 nm of low intensity which was tentatively assigned as a Schiff base intermediate. The subsequent elimination of phosphate affords a transient with intense absorption maxima at 455 and 282 nm, suggesting an intermediate with an extended system of conjugated double bonds. The subsequent formation of the enzyme product, 6,7-dimethyl-8-ribityllumazine, is the rate-determining step.  相似文献   

13.
The F1FO‐ATP synthase is required for growth and viability of Mycobacterium tuberculosis and is a validated clinical target. A mycobacterium‐specific loop of the enzyme's rotary γ subunit plays a role in the coupling of ATP synthesis within the enzyme complex. We report the discovery of a novel antimycobacterial, termed GaMF1, that targets this γ subunit loop. Biochemical and NMR studies show that GaMF1 inhibits ATP synthase activity by binding to the loop. GaMF1 is bactericidal and is active against multidrug‐ as well as bedaquiline‐resistant strains. Chemistry efforts on the scaffold revealed a dynamic structure activity relationship and delivered analogues with nanomolar potencies. Combining GaMF1 with bedaquiline or novel diarylquinoline analogues showed potentiation without inducing genotoxicity or phenotypic changes in a human embryonic stem cell reporter assay. These results suggest that GaMF1 presents an attractive lead for the discovery of a novel class of anti‐tuberculosis F‐ATP synthase inhibitors.  相似文献   

14.
The fluoro analogue of the enolate intermediate in the reaction catalyzed by type II dehydroquinases has been prepared from naturally occurring (-)-quinic acid over seven steps and has been shown to be the most potent inhibitor reported to date of the type II enzyme from Mycobacterium tuberculosis.  相似文献   

15.
The two epimeric covalent hydrates A and B of 6,7-bis(trifluoromethyl)-8-D-ribityllumazine are metabolically stable analogues of hypothetical intermediates proposed in the reactions catalyzed by riboflavin synthase and lumazine synthase. To confirm the stereochemical assignments previously based solely on results for epimer B, a (15)N[(19)F] REDOR NMR study was performed on the complex formed from epimer A and a recombinant, uniformly (15)N-labeled F22W mutant of Bacillus subtilis lumazine synthase. The results indicate that the fluorines of the ligands are closer to the side chain nitrogens of Arg127 and farther away from the side chain nitrogens of Lys135 in epimer B than in epimer A. These results are consistent with the assignment of the earlier 7R configuration of epimer A and the 7S configuration of epimer B.  相似文献   

16.
The riboflavin synthase/lumazine synthase complex of Bacillus subtilis catalyzes the last two steps in riboflavin biosynthesis. The protein comprises a capsid of 60 beta subunits with lumazine synthase activity and a core of three alpha subunits with riboflavin synthase activity. The beta subunits catalyze the formation of 6,7-dimethyl-8-ribityllumazine (3) from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione (1) and 3,4-dihydroxy-2-butanone 4-phosphate (2). Complexes of recombinant lumazine synthase (beta(60) capsids) with 6-trifluoromethyl-7-oxo-8-ribityllumazine (10) as well as 7S- or 7R-6,7-bistrifluoromethyl-8-ribityllumazine hydrate (11) were studied by (19)F NMR spectroscopy. Despite the large molecular weight of approximately 960 kDa of the protein, spectra with separated signals of free and bound ligand could be obtained. An unusually large shift difference of 8 ppm was observed between the 7-trifluoromethyl signals of free and bound ligand for epimer B of 11 and the enzyme. The signal is sensitive to the replacement of amino acid residues F22 and H88. Lumazine synthase catalyzes the elimination of the 7-trifluoromethyl group of R-diastereomer epimer A in a haloform-like reaction. The elimination reaction is also catalyzed by F22 mutants. The H88R mutant displays an opposite stereoselectivity for epimer B and a greatly enhanced reaction rate. From a model of the epimers in the active site of the protein, the main function of the side chain of F22 seems to be to keep the substrate ring in the correct position. H88 is in a position suited to act as proton acceptor in both the physiological as well as the haloform reaction. A different mechanism of the haloform-reaction is proposed in the case of the H88R mutant, initiated by hydrogen bonding of the 7-trifluorormethyl group and the guanidinium group of the arginine residue.  相似文献   

17.
[graph: see text] Lumazine proteins of luminescent bacteria are paralogs of riboflavin synthase which are devoid of catalytic activity but bind the riboflavin synthase substrate, 6,7-dimethyl-8-ribityllumazine, with high affinity and are believed to serve as optical transponders for bioluminescence emission. Lumazine protein of Photobacterium leiognathi was expressed in a recombinant Escherichia coli host and was reconstituted with mixtures (random libraries) of 13C-labeled isotopologs of 6,7-dimethyl-8-ribityllumazine or riboflavin that had been prepared by biotransformation of [U-(13)C6]-, [1-(13)C1]-, [2-(13)C1]-, and [3-(13)C1]glucose. 13C NMR analysis of the protein/ligand complexes afforded the assignments of the 13C NMR chemical shifts for all carbon atoms of the protein-bound ligands by isotopolog abundance editing. The carbon atoms of the ribityl groups of both ligands studied were shifted up to 6 ppm upon binding to the protein. Chemical shift modulation of the side chain and chromophore carbon atoms due to protein/ligand interaction is discussed on the basis of the sequence similarity between lumazine protein and riboflavin synthase.  相似文献   

18.
A microwave-enhanced, palladium-catalyzed protocol for the alpha-arylation of a protected glycine in neat water is described. This reaction proceeds rapidly, under non-inert conditions, to afford a range of phenylglycine derivatives in moderate to good yields. Based on this alpha-arylation, a number of aryl L-methionine-SR-sulfoximine (MSO) analogues were prepared and evaluated for their Mycobacterium tuberculosis glutamine synthetase (TB-GS) inhibitory activity.  相似文献   

19.
The cell wall complex in mycobacteria, including the human pathogen Mycobacterium tuberculosis, is comprised in large part of two polysaccharides that contain a significant number of arabinofuranose residues. Both polysaccharides are assembled by a family of arabinosyltransferases that use decaprenolphosphoarabinose (3) as the donor species. In this paper, we describe the synthesis of a panel of C-phosphonate analogues of 3, which were designed to inhibit these arabinosyltransferases and thus block the biosynthesis of mycobacterial cell wall polysaccharides. A number of routes were explored for the preparation of the targets. The successful approach involved the synthesis of a protected C-phosphonate allyl ester 16, which was then coupled to an alkene via an olefin cross metathesis reaction. Subsequent reduction of the alkene with diimide and deprotection afforded the targets. Screening of these compounds in vitro against Mycobacterium tuberculosis revealed that one of the compounds, 15f, possessed antituberculosis activity, with an MIC value of 3.13 microg/mL.  相似文献   

20.
Cinnamaldehyde derivatives were synthesized in good to excellent yields in one step by a mild and selective, base-free palladium(II)-catalyzed oxidative Heck reaction starting from acrolein and various arylboronic acids. Prepared α,β-unsaturated aldehydes were used for synthesis of novel α-aryl substituted fosmidomycin analogues, which were evaluated for their inhibition of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase. IC(50) values between 0.8 and 27.3 μM were measured. The best compound showed activity comparable to that of the most potent previously reported α-aryl substituted fosmidomycin-class inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号