首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The formation of a variety of mixed colloidal aggregates has been investigated on a ternary ionic-nonionic system constituted by (i) a double-chain cationic surfactant with a 12-carbon atom hydrophobic tail, didodecyldimethylammonium bromide (di-C(12)DMAB), (ii) a nonionic single-chain surfactant, octyl-beta-D-glucopyranoside (OBG), and (iii) water. The study has been carried out by means of conductivity, zeta-potential, transmission electron microscopy (TEM), and cryogenic transmission electron microscopy (cryo-TEM) experiments on the highly diluted, very diluted, and moderately diluted regions. The formation of mixed microaggregates, prior to the appearance of mixed vesicles, has been undoubtly confirmed by conductivity, TEM, and zeta-potential results. The concentrations at which these mixed colloidal aggregates form, i.e., the mixed critical microaggregate concentration (CAC), the mixed critical vesicle concentration (CVC), and the mixed critical micelle concentration (CMC), have been determined from conductivity data, while the zeta-potential experiments allow for the characterization of the aggregate/solution interface. The shape and size of the microaggregates and vesicles have been evaluated from TEM and cryo-TEM micrographs, respectively. All of the experimental evidence has been also analyzed in terms of the theoretical packing parameter, P.  相似文献   

2.
Several experimental techniques (conductivity, zeta potential, transmission electronic microscopy, and steady-state fluorescence spectroscopy) have been used to study the formation of mixed colloidal aggregates consisting of a cationic double-chain surfactant, di-dodecyldimethylammonium bromide (di-C12DMAB), and a single-chain alkyltrimethylammonium bromide with 10 and/or 14 carbon atoms (decyltrimethylammonium bromide, C10TAB, and/or tetradecyltrimethylammonium bromide, C14TAB). Special interest has been devoted to the prevesicle domain, within which the formation of aggregated nanostructures was first reported in our laboratory. For that purpose, studies have been carried out on the very dilute region by means of conductivity experiments, confirming the existence of two critical aggregation concentrations in that concentration domain: the so-called mixed critical aggregate concentration, CAC, and the mixed critical vesicle concentration, CVC. By carrying out TEM experiments on negatively stained samples, we were surprised to find a number of aggregates without a clear aggregation pattern and with a variety of sizes and shapes at concentrations below CAC, where only monomers were expected. However, the nanoaggregates found at concentrations between CAC and CVC, also by TEM microscopy, show a clear and ordered "fingerprint"-like aggregation pattern similar to the liquid-crystalline phases reported for DNA-liposome complexes and/or DNA packed with viral capsids. Finally, at total surfactant concentrations above CVC, the aggregates were confirmed, by means of cryo-TEM micrographs and zeta potential measurements, to be essentially unilamellar spherical vesicles with a medium polydispersity and a net-averaged surface density charge of around 12 x 10(-3) C m(-2). The fluorescence emission of two probes, TNS (anionic) and PRODAN (nonionic), allows for the analysis of the micropolarity and microviscosity of the different microenvironments present in aqueous surfactant solutions where the above-mentioned vesicle and prevesicle aggregates are present.  相似文献   

3.
Charge in ionic micelles determines the trends of their stability and their practical applications. Charge can be calculated from zeta potential (zeta) measurements, which, in turn, can be obtained by Doppler microelectrophoresis. In this study, the electrophoretic properties of dodecyltrimethylammonium bromide (DTAB) in KBr aqueous solution (0-6 mM) were determined by Doppler microelectrophoresis. At very low surfactant concentrations (up to 6 mM), zeta potential was quite constant and due to the ionized monomers (DTA+). Above 6 mM, zeta potential increased to a maximum at surfactant concentrations still below the critical micellar concentration (CMC). This increase could be explained by a formation of nonmicellar aggregates of DTAB. Then, above the CMC, zeta potential underwent an abrupt reduction, which was dependent qualitatively and quantitatively on KBr concentration, and which could be due to an increase of the number of counterions adsorbed on the micelle surface. Calculation of effective micellar charge from zeta potential gave the surface charge density. Comparing this value with the theoretical, obtained from geometrical considerations, a fraction of 0.29 of charged micellar headgroups was obtained when DTAB was in aqueous solution, which is consistent with the value obtained by conductivity measurements.  相似文献   

4.
The formation of spontaneous mixed prevesicles and vesicles consisting of a cationic double-chain surfactant, didecyldimethylammonium bromide (di-C(10)DMAB), and a cationic single-chain alkyltrimethylammonium bromide with 10 and/or 14 carbon atoms (decyltrimethylammonium bromide, C(10)TAB, and/or tetradecyltrimethylammonium bromide, C(14)TAB) has been investigated by means of a series of (i) highly precise experimental techniques, such as conductometry, transmission electronic microscopies (TEM and cryo-TEM), laser Doppler electrophoresis (LDE), and steady-state fluorescence spectroscopy and (ii) theoretical models, such as the DLVO theory and two of its main further modifications, Inoues's and Sogami's models. Two new potentials, based on the combination of DLVO or Inoue potentials with that of Sogami, have been proposed and checked. This theoretical analysis has been carried out not only for the aggregates studied in this work but also for other di-C(m)DMAB + C(n)TAB (m = 10, 12 and n = 10, 12, 14) systems previously reported by us. In respect to the experimental study, special emphasis has been devoted to the prevesicle domain. We have confirmed the existence of two critical aggregation concentrations in the very diluted concentration domain, where the conductivity plot shows a zigzag pattern: the so-called mixed critical aggregate concentration, CAC* and the mixed critical vesicle concentration, CVC*. Contrarily, only CVC* is detected. The pre-CAC* nanoaggregates, with a variety of sizes and shapes, do not show a clear aggregation pattern, but even at such low concentrations a small number of nanoaggregates with a clear and ordered aggregation pattern has been visualized. In the postvesicle domain, the aggregates (vesicles) are unilamellar and spherical with a medium polidispersity and a net averaged surface density charge of around 14 x 10(-3) (pure vesicles) and 24 x 10(-3) C m(-2) (mixed vesicles). The hydrophobicities of the lipidic bilayer and the surface of the vesicles resemble those of media with dielectric constants of around 30 and 75, respectively. Finally, theoretical predictions confirm the stability of the pure and mixed vesicles studied in this work and in other works previously reported.  相似文献   

5.
The influence of isopropyl alcohol (IPA) on the size and composition of the mixed micelles in mixtures of tetradecyltrimethylammonium bromide (TTAB) and chlorhexidine digluconate (CG) has been determined as a function of the composition of the systems. The addition of 0.5 M and 1.0 M IPA had little significant effect on the composition of the mixed micelles as determined both by analysis of critical micelle concentration (CMC) data using a theoretical treatment based on excess thermodynamic quantities and by an empirical treatment of conductivity data. Static and quasielastic light scattering measurements showed a progressive decrease of the aggregation number and hydrodynamic radius of TTAB micelles on addition of IPA, but minimal changes in the properties of the small CG aggregates. The results show that the micellar weight in the TTAB/CG/IPA solutions is determined by the ratio of the surfactants in the system and for each TTAB/CG ratio decreases on addition of IPA.  相似文献   

6.
The mixed micelles constituted by a nonionic surfactant widely used in the biochemical field, n-octyl-beta-D-glucopyranoside, and a cationic surfactant with 12 carbon atoms on the hydrophobic tail, dodecyltrimethylammonium bromide, have been studied in aqueous solution, at 298.15 K, by means of conductivity, speed of sound, density, and fluorescence spectroscopy experiments. From these data, the monomeric and micellar phases of the mixed aggregates were fully analyzed through the determination of the total and partial critical micellar concentrations, the dissociation degree of the mixed micelle, the total and partial aggregation numbers, the apparent molar volumes and isentropic compressibilities, the hydration numbers, and the corresponding changes in these thermodynamic properties due to the mixed aggregation process. The experimental findings have been compared with those obtained with several theoretical models, some of them modified in this work to take into account the specific characteristics of the aggregates studied herein.  相似文献   

7.
Speed of sound, density, conductivity, and fluorescence spectroscopy experiments were run to analyze the mixed aggregation process of a nonionic-cationic surfactant system in aqueous media at 298.15 K. The mixed system comprises a nonionic surfactant, n-octyl-beta-D-glucopyranoside (OBG), and a cationic surfactant, tetradecyltrimethylammonium bromide (C14TAB), with 8 and 14 carbon atoms on the hydrophobic tails, respectively. From these data, the total and partial critical micellar concentrations, the total and partial aggregation numbers, apparent molar volumes and isentropic compressibilities, hydration numbers, and the corresponding changes in the latest properties due to the mixed aggregation process were determined. Pure and mixed micelles were analyzed from a geometrical point of view by determining the packing parameter of the aggregates. Furthermore, the experimental characterization of both the monomeric and micellar phases was completed with a theoretical study of the mixed micellization phenomena studied herein, by means of some of the most relevant theoretical models.  相似文献   

8.
The spontaneous and thermodynamically stable mixed vesicles constituted by a double-chain cationic surfactant with 10 carbon atoms hydrophobic tail, didecyldimethylammonium bromide (di-C(10)DMAB), and a nonionic single-chain surfactant, octyl-beta-d-glucopyranoside (OBG), have been characterized in aqueous media by means of a series of experimental techniques, as well as a theoretical approach. Conductivity data allow for the determination of the concentrations at which the monomer-to-vesicle (CVC) and/or vesicle-to-micelle (CMC) transitions occur. Electrophoretic mobilities, obtained from laser-doppler-electrophoresis experiments, permit the determination of zeta-potentials and, from them, the surface charge density of the vesicle aggregates. Cryogenic transmission electron microscopy (cryo-TEM) provides pictures of the vesicles, their size and shape being, thus, determined. Finally, the sensitivity of the emission spectra of some fluorescent probes, such as the cationic TNS and the nonionic PRODAN, to the polarity of the environment, allow for a complete study of different pre- and post-vesicle microdomains, of variable rigidity and micropolarity. This, in turn, yield interesting information about the vesicle surface and bilayer, as well as, about the existence of clusters and/or nanoaggregates prior to the formation of vesicles, as was proposed by us in a previous paper.  相似文献   

9.
Conductivity and static fluorescence measurements have been carried out at 25 degrees C to study the monomeric and micellar phases of aqueous solutions of mixed micelles constituted by a conventional cationic surfactant, dodecyltrimethylammonium bromide (D(12)TAB), and a tricyclic antidepressant drug, amitriptyline hydrochloride (AMYTP), with aggregation properties. From conductivity data, the total mixed critical micelle concentration and the dissociation degree of the mixed micelle have been obtained, while fluorescence experiments allow for the determination of the total aggregation number, and the micropolarity of micellar inside. Furthermore, the partial contribution of each surfactant to the mixed micellization process, through their critical micelle concentrations and their aggregation numbers have been determined, as well. The solubilization of the drug in the mixed micelles has been also studied through the mass action model, by determining the association constant between the micelles and the drug. From these results, the use of the micelles studied in this work as potential models for vectors of antidepressant drugs of the amitriptyline family has been discussed. The theoretical aspects of the mixed micellization process have been also analyzed.  相似文献   

10.
In a series of experiments, we studied the dynamic properties of aqueous surfactant solutions of cetyltrimethylammonium bromide (CTAB) at conditions after adding different amounts of sodium salicylate (NaSal). The aggregates, present in these solutions, are elongated, wormlike micelles, which tend to form entanglement networks. The viscoelastic, gel-like samples were analyzed by means of static, dynamic, and electrophoretic light scattering techniques. We separately investigated the effects of surfactant concentration and added salt on intermicellar interactions. The electrostatic interactions between the anisometric micelles were analyzed by considering the effective dimensions of the aggregates. We calculated the Debye-Huckel lengths from experimental data of the osmotic second virial coefficient and from the diffusion second virial coefficient. It turned out that the results were in good agreement with theoretically estimated values. We also measured the zeta potential and intensity of scattered light in a large range of different salt concentrations keeping the CTAB concentration constant. We observed an isoelectric point and charge reversal of the threadlike micelles at an excess salicylate concentration of about 100 mM. The observed decrease of the zeta potential points to striking processes of counterion condensation. In these solutions, the salicylate ion acts as a cosurfactant, due to its discrepancy between polar and hydrophobic groups. We also detected a simple linear correlation between the zeta potentials and the Debye screening lengths of the surfactant solutions.  相似文献   

11.
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.  相似文献   

12.
A recently described non-viral gene delivery system [dioctadecyldimethylammonium bromide (DODAB)/monoolein (MO)] has been studied in detail to improve knowledge on the interactions between lamellar (DODAB) and non-lamellar-forming (MO) lipids, as a means to enhance their final cell transfection efficiency. Indeed, the morphology, fluidity, and size of these cationic surfactant/neutral lipid mixtures play an important role in the ability of these systems to complex nucleic acids. The different techniques used in this work, namely dynamic light scattering (DLS), fluorescence spectroscopy, differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), light microscopy (LM), and surface pressure-area isotherms, allowed fully characterization of the phase behavior and aggregate morphology of DODAB/MO mixtures at different molar ratios. Overall, the results indicate that the final morphology of DODAB/MO aggregates depends on the balance between the tendency of DODAB to form zero-curvature bilayer structures and the propensity of MO to form non-bilayer structures with negative curvature. These results also show that in the MO-rich region, an increase in temperature has a similar effect on aggregate morphology as an increase in MO concentration.  相似文献   

13.
刘天晴  郭荣 《中国化学》2006,24(5):620-626
The effects of cetyltrimethylammonium bromide (CTAB) on the properties of hemoglobin (Hb) at low CTAB concentration were studied in Hb/acyclovir/CTAB system by the methods of UV-Vis spectrum, fluorescence, zeta potential, conductivity and negative-staining transmission electron microscope (TEM). With the increase of CTAB concentration, the UV peak intensity at 276 nm, the intrinsic fluorescence, the zeta potential of Hb and the system conductivity were all enhanced. Hb was easily oxidized to oxyHb and hemichrome. In Hb/acyclovir/CTAB system, CTAB made the UV-Vis spectrum, fluorescence, conductivity and conformation of Hb tend to be returned to those of the original Hb but the zeta potential not to do so. The UV absorption peak of Hb-acyclovir complex disappeared and the tight structure of Hb aroused by acyclovir was refolded. When CTAB concentration was higher than 5 × 10 ^5 mol/L, the two absorption peaks at 536 and 576 nm appeared again, and the Hb structure became looser again.  相似文献   

14.
An anionic/cationic mixed surfactant aqueous system of surfactin and cetyl trimethyl ammonium bromide (CTAB) at different molar ratios was studied by surface tension and fluorescence methods (pH 8.0). Various parameters that included critical micelle concentration (cmc), micellar composition (X 1), and interaction parameter (β m) as well as thermodynamic properties of mixed micelles were determined. The β m was found to be negative and the mixed system was found to have much lower cmc than pure surfactant systems. There exits synergism between anionic surfactin and cationic CTAB surfactants. The degree of participation of surfactin in the formation of mixed micelle changes with mixing ratio of the two surfactants. The results of aggregation number, fluorescence anisotropy, and viscosity indicate that more packed and larger aggregates were formed from mixed surfactants than unmixed, and the mixed system may be able to form vesicle spontaneously at high molar fraction of surfactin.  相似文献   

15.
The interaction between the cationic HTMA-PFP (Poly-(9,9-bis(6'-N,N,N-trimethylammonium)hexyl-fluorene phenylene) bromide) and oppositely charged sodium n-alkyl sulfonate surfactants of different chain lengths has been studied in DMSO-water solutions (4% v/v) by UV-visible absorption, fluorescence spectroscopy, fluorescence lifetimes, electrical conductivity, and (1)H NMR spectroscopy. Polymer-surfactant interactions lead to complex spectroscopic behaviors which depends on surfactant concentration. At low surfactant concentrations, the observed strong static fluorescence quenching of fluorescence seems to be associated with formation of aggregates between polymer chains neutralized through interaction with surfactants. This is supported by conductivity and by analysis of absorption spectra deconvoluted at each surfactant concentration using an adapted iterative method. In contrast, above the surfactant critical micelle concentration, there is a strong fluorescence enhancement, leading in some cases to higher intensities than in the absence of surfactants. This is attributed to the transformation of the initially formed aggregates into some new aggregate species involving surfactant and polymer. These changes in HTMA-PFP fluorescence as a function of n-alkyl sulfonate concentration are important for the general understanding of polymer-surfactant interactions, and the aggregates formed may be important as novel systems for applications of these conjugated polyelectrolytes.  相似文献   

16.
We investigated the properties of 1-decyl-3-methylimidazolium bromide (DMImBr), a molten salt at room temperature, and its mixtures with water in the whole proportions.At low concentrations, this salt behaved like a classical cationic amphiphile. Its critical micellar concentration (cmc) was determined by conductimetry and by measuring electromotive forces (EMF) with bromide or cationic surfactant-selective electrodes. Moreover, the association rate of the counter ion to micelle has been determined on a wide range of concentrations, allowing characterising the micellisation equilibrium by a solubility product.The conductivity of this liquid electrolyte in mixtures with water was maximal at high concentrations. We modelled this behaviour, taking into account the molar volume fraction of both phases.Our results show that these solutions, which are composed of dispersed aggregates, behave like mixtures of two phases that interpenetrate themselves.  相似文献   

17.
The micelle formation process for a typical anionic surfactant, sodium dodecyl sulfate, and a typical cationic surfactant, dodecyltrimethylammonium bromide, has been investigated in a series of mixed solvents consisting of different concentrations of isomeric hexanediols (1,2-hexanediol and 1,6-hexanediol) in water. The critical micelle concentrations and the degrees of counterion dissociation of the mixed micelles were obtained from conductance experiments. Luminescence probing experiments have been used to determine the concentration of micelles in solution and, hence, the micellar aggregation numbers of the surfactants in the mixed solvent systems. The alcohol aggregation numbers were determined by combining the partition coefficients (obtained using NMR paramagnetic relaxation enhancement experiments) with the micellar concentrations from the luminescence probing experiments. All these results are interpreted in terms of the difference in the interaction of the isomeric hexanediols with the surfactant as a function of the position of the hydroxyl groups on the six-carbon chain of the alcohol. Received: 28 June 2000/Accepted: 5 July 2000  相似文献   

18.
The concentration vs composition diagram of aggregate formation of the dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) mixture in aqueous solution at rather dilute region was constructed by analyzing the surface tension, turbidity, and electrical conductivity data and inspected by cryo-TEM images and dynamic light scattering data. Although the aqueous solution of DTAB forms only micelles, the transition from monomer to small aggregates and then to vesicle was found at 0.1 < X2 相似文献   

19.
The present work aimed at research the physic-chemical properties of the interaction of N-decyl-O-chitosan sulfate (an amphiphilic chitosan derivative, C10-OCHS) with cetyltrimetylammonium bromide (CTAB) by the steady-state fluorescent, static/dynamic surface tension, turbidity and transmission electron microscopy (TEM). The results showed that the complex of C10-OCHS/CTAB had high surface activity and lower critical aggregation concentration. Besides, the C10-OCHS/CTAB could self-assemble into various aggregates like irregular spherical aggregates, vesicles or polydisperse aggregates from lower to higher concentrations of CTAB with a mixed C10-OCHS concentration of 200?mg/L.  相似文献   

20.
The interaction of sodium dodecyl sulfate (SDS) in aqueous solution with poly(N-vinyl-2-pyrrolidone) (M(w) = 55,000 g/mol) in the presence of poly(ethylene glycol) (M(w) = 8000 g/mol) is investigated by electrical conductivity, zeta potential measurements, viscosity measurements, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate that SDS-polymer interaction occurs at low surfactant concentration, and its critical aggregation concentration is fairly dependent on polymer composition. The polymer-supported micelles have average aggregation numbers dependent on surfactant concentration, are highly dissociated when compared with aqueous SDS micelles, and have zeta potentials that increase linearly with the fraction of PVP at constant SDS concentration. The analysis of the SAXS measurements indicated that the PVP/PEG/SDS system forms surface-charged aggregates of a cylindrical shape with an anisometry (length to cross-section dimension ratio) of about 3.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号