首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical computations and a series of experiments were conducted in microgravity to study the ignition characteristics of a thin polymethylmethacrylate (PMMA) sheet (thicknesses of 0.2 and 0.4 mm) using a CO2 laser as an external radiant source. Two separate ignition events were observed, including ignition over the irradiated surface (frontside ignition), and ignition, after some delay, over the backside surface (backside ignition). The backside ignition was achieved in two different modes. In the first mode, after the laser was turned off, the flame shrank and stabilized closer to the fuel surface. This allowed the flame to travel from the frontside to the backside through the small, open hole generated by the laser’s vaporization of PMMA. In the second mode, backside ignition was achieved during the laser irradiation. The numerical calculation simulating this second process predicts fresh oxygen supply flows from the backside gas phase to the frontside gas phase through the open hole, which mixes with accumulated hot MMA fuel vapor which is ignited as a second flame in the frontside gas phase above the hole. Then, the flame initiated from the second ignition travels through the hole to ignite the accumulated flammable mixture in the backside gas phase near the hole, attaining backside ignition. The first backside ignition mode was observed in 21% oxygen and the second backside ignition mode in 35%. The duration of the laser irradiation appears to have important effects on the onset of backside ignition. For example, in 21% oxygen, the backside ignition was attained after a 3 s laser duration but was not observed after a 6 s laser duration (within the available test time of 10 s). Longer laser duration might prevent two-sided ignition in low oxygen concentrations.  相似文献   

2.
An unsteady three-dimensional numerical model has been formulated, coded, and solved to study ignition and flame development over a composite solid fuel sample upon heating by a localised radiant beam in a buoyant atmosphere. The model consists of an unsteady gas phase and an unsteady solid phase. The gas phase formulation consists of full Navier-Stokes equations for the conservation of mass, momentum, energy, and species. A one-step, second-order overall Arrhenius reaction is adopted. Gas radiation is included by solving the radiation transfer equation. For the solid phase formulation, the energy (heat conduction) equation is employed to solve the transient solid temperature. A first-order in-depth solid pyrolysis relation between the solid fuel density and the local solid temperature is assumed. Numerical simulations provide time-and-space resolved details of the ignition transient and flame development and the existence of two types of ignition modes: one with reaction kernel initiated on the surface and the other with ignition kernel initiated in the gas phase. Other primary outputs of the computation are the minimum ignition energy (Joule) for the solid as a function of the external heating rate (Watt). Both the critical heat input for ignition and the optimal ignition energy are identified. Other parameters that were varied over the simulations include: sample thickness, ignition heat source spatial shape factor, and gravity level.  相似文献   

3.
The process of local structure modification inside of lithium silicate glass under the combined laser action of two different wavelengths is considered. The first step is laser irradiation of ultrashort laser pulses with 532 nm wavelength, which is used to create of nucleation centers inside of the optically transparent glass. The crystallization of the structural modification areas was carried out by a photothermal action of CO2 laser radiation with a 10.6 μm wavelength. The range of crystallization temperatures was defined and the kinetics of the phase transformations of the modified regions inside of the glass were studied. Duration of crystallization was about 10 min with a slow heating and 25 s at the fast heating to crystallization temperature.  相似文献   

4.
Mixing experiments with 30 THz CO2-laser radiation as well as the detection of 35 ps 30 THz pulses of an optical-free-induction-decay CO2-laser system have been performed with the first nanometer thin-film Ni-NiO-Ni diodes with a minimum contact area of 0.012 µm2. Difference frequencies up to 85 MHz were detected by mixing two different CO2-laser beams coupled to the diode with an integrated bow-tie antenna. The dependence of the beat signal on bias voltage, laser power and polarization of the infrared laser radiation was determined.  相似文献   

5.
Reversibility of the structural phase modification of glass-ceramics (photosensitive and nonphotosensitive) under CO2-laser irradiation has been experimentally demonstrated. It is shown that CO2-laser irradiation leads to glass crystallization and subsequent reverse amorphization of the glass-ceramics FS-1 and ST-50-1. Upon laser heating, the rate of such structural modifications is two to three orders of magnitude higher than upon stationary furnace heating. The technology of laser structural modification of glass-ceramics is promising for developing and manufacturing new optical and other types of elements and microstructures.  相似文献   

6.
Conclusions In conclusion, let us note some important problems whose solution, in our opinion, will make for a better undertanding of the physical mechanisms of processes occuring in a low-threshold breakdown of gases near solid targets. First is the systematization of data on threshold-breakdown intensities (dependence of Sbr on the area of the irradiation spot and laser-pulse duration over wide ranges of these quantities, on the pressure and kind of gas surrounding the target, and on the radiation wavelength). Analysis of such data would make it possible to construct a more orderly theory of the process. Also of great interest is the transfer of heat to a solid target from the plasma of the low-threshold breakdown of a gas and from the shock waves propagating in the plasma. It is advisable to carry out numerical calculations on the gasdynamic processes occurring near a solid target under irradiation by a pulsed CO2 laser, with account for the counterpressure of the ambient gas and for various regimes breakdown-plasma propagation with subsequent comparison of these data with experimental results.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 11, pp. 34–60, November, 1977.  相似文献   

7.
In microwave conductivity investigations of photoexcited germanium at low temperatures under CO2 laser pulse irradiation the evaporation of EHL and e-h plasma formation have been observed. This plasma irreversibly vanishes at high CO2 laser intensities ICO2 >4 × 105 W cm?2 but recondenses at low intensities. It was found that complete and irreversible disappearance of EHL is due to the e-h plasma throw out to the crystal boundaries by phonon wind, generated in 10.6 μm radiation absorption whereas at ICO2 > 106 W cm?2 it is connected with the crystal lattice heating over the condensation critical temperature. A theoretical analysis of the CO2 laser produced phonon wind interaction with e-h plasma is briefly presented. By comparing with experimental data on recondensation process the phonon wind efficiency is estimated.  相似文献   

8.
Carbon dioxide (CO2) trace gas detection based on quartz enhanced photoacoustic spectroscopy (QEPAS) using a distributed feedback diode laser operating at λ=2 μm is performed, with a primary purpose of studying vibrational relaxation processes in the CO2-N2-H2O system. A simple model is developed and used to explain the experimentally observed dependence of amplitude and phase of the photoacoustic signal on pressure and gas humidity. A (1σ) sensitivity of 110 parts-per-million (with a 1 s lock-in time constant) was obtained for CO2 concentrations measured in humid gas samples. PACS 07.07.Df; 42.62.Fi; 82.80.Kq; 42.55.Px  相似文献   

9.
The IRMPD of Si2F6 by a CO2 TEA laser was applied to isotopically selective CVD of silicon. A white film, probably consisting of polymers of SiF2, was deposited on a metal foil during the irradiation of natural Si2F6 with the laser radiation at 951.19 cm–1 and about 1.5 J cm–2. Upon heating, the film became dark brown, evolving SiF4. The30Si content was found to be as high as about 20%.  相似文献   

10.
Tunable, cw, far infrared (FIR) radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal, (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated indium antimonide bolometer. Two-tenths of a microwatt of FIR power was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2 isotope lasers promises complete coverage of the entire far infrared band from 100 to 5000 GHz (3–200 cm–1) with stepwise-tunable cw radiation.Contribution of the National Bureau of Standards, not subject to copyright  相似文献   

11.
Conclusion A double beam heterodyne spectrometer with 2.5 GHz bandwidth was built in Reims. The receiver's bandwidth was measured by heterodyning radiation from a CO2 laser with the radiation from a tunable diode laser. The spectrometer was used for laboratory studies. Ammonia absorption spectra were recorded. Line positions in agreement with other works were measured.This apparatus will soon be used for atmospheric ozone studies in association with an isotopic12C18O2 laser to avoid atmospheric CO2 absorption.  相似文献   

12.
The formation mechanism of rapidly solidified microstructures in a magnesia partially stabilised zirconia (MgO-PSZ) following CO2 laser radiation has been investigated. The influence of laser processing parameters on the microstructures of this material was analysed based on a review of the basic concepts of solidification, the theories of constitutional suppercooling and morphological stability. The different microstructures that were brought about by various laser parameters and appeared across the same track were examined based on the CO2 laser beam profile of a transverse electromagnetic mode (TEM01). The contact angle measurement revealed a better wettability characteristic of CO2-laser-modified MgO-PSZ. The clear differences were observed in the change in contact angle for glycerol across the range of rapid solidification microstructures obtained with various power densities. It was therefore determined that the degree of rapid surface resolidification could be the most predominant element governing the wettability characteristics of the MgO-PSZ. The sharp reduction of contact angle for glycerol took place when the cellular microstructure appeared and might be accompanied by the onset of melting on the modified surface of the MgO-PSZ. Moreover, the CO2 laser treatment also brought about the change in the surface oxygen content and surface roughness. The analysis showed that surface oxygen content was also an influential factor in changing the wettability characteristics of the MgO-PSZ, whilst surface roughness was found to play an insignificant role. The work provides the clear evidence that laser radiation can be a workable and controllable technique to modify the wetting characteristic of the MgO-PSZ.  相似文献   

13.
New aspects of substance separation by the laser driven diffusion of gaseous mixtures through capillaries are presented. By using the chopped radiation of a low power CO2 laser, the experimental dependence of the separation coefficient on the pulse frequency in mixtures containing resonant and non-resonant gases was investigated. The induced effects agree with a model in which the number density of adsorbed molecules should be connected to temporal characteristics of the radiation. By avoiding heating effects, a pulsed laser irradiation may provide a new approach related to the practical purposes of substance separation in metal capillaries.  相似文献   

14.
Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.  相似文献   

15.
研究了封闭圆柱石英腔中化学计量CH4:O2混合气的燃烧试验。使用了非定域脉冲HF激光触发和直接使用脉冲CO2激光器助燃两种引燃方法。第二种引燃方法是使用小剂量的可以强烈吸收脉冲CO2激光辐射的sF6来加热易燃混合气。研究了燃烧过程,并确定了燃烧辉光的谱线特征。试验表明,即使在小体积反应器中,固定数量反应气的快速激光加热也能够极大地加速燃烧进程并达到混合气燃烧的爆炸模式。得到了阈值情况下沿腔轴的初始温度分布。  相似文献   

16.
The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for concrete have been determined. By employing Beer–Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 470±22 μm and 177±15 μm, respectively. Indeed, this was borne out somewhat from a cross-sectional analysis of the melt region produced by both lasers which showed melting occurred to a greater depth when the CO2 laser was used.  相似文献   

17.
To date, an acute ecological problem is toxic gas exhausts into the atmosphere. One approach to solving it is to control the process of combustion by various electromagnetic fields, in particular laser irradiation of the combustion zone. The present work reports the results of an experimental study of the effect of pulse-periodic CO2 laser radiation on the combustion of a propane-air mixture outflowing into the atmosphere.  相似文献   

18.
Laser cutting of glass using the controlled fracture technique leads to cut path deviation at the leading and trailing edges of the float glass sheet. In this technique, thermal stresses are used to induce the crack, and the material is separated along the cutting path by extending the crack. We show that the cut path deviation is partly due to high magnitudes of thermal stresses generated near the sheet edges. The absorption of intense radiation from the CO2 and diode laser beams in the glass causes local temperature increases and consequently generates different thermal fields and stress distributions due to surface and volumetric heat absorption. In this paper, we report the effect of the CO2 and diode laser wavelength interaction with the float glass and its effect on the magnitudes of thermal stresses generated near the edges of the glass sheet. We simulate the distribution of the thermal stress and temperature using finite-element analysis software Abaqus and validate it against the experimental data. We show that the CO2 laser produces a lower surface quality and a larger cut path deviation at the leading and trailing edges of the glass sheet as compared to the diode laser.  相似文献   

19.
The measurement of relative intensities in CO2 combination bands spectrum is performed using wavelength modulation spectroscopy (WMS) and a DFB (distributed feedback) diode laser operating at 1.6 μm. The diode laser is stabilized with an external Fabry–Pérot interferometer and absorption spectroscopy is performed in a multipass gas cell. A spectrum containing spectral lines of both 13CO2 and 12CO2 isotopic species is recorded. The variation of laser power during frequency scanning and the line shape are taken into account to accurately extract line intensities from experimental data. The isotopic concentration ratio is deduced from the intensity ratio. Both ratios are measured with an accuracy of about 0.5% in pure CO2. Received: 9 June 2000 / Published online: 8 November 2000  相似文献   

20.
The powder catchment and clad profile of the edge welding were investigated by experimental and numerical approaches in this study. The clad profile on the edges joined by a coaxial powder filler nozzle with a CO2 laser was measured and compared with the powder concentration mode, which was confirmed by powder flow visualization and numerical computations.In the numerical simulation of an impinging jet of gas-powder flow on an edge joint, the powder concentration distributed on a V groove joined by two plates was solved by FLUENT software. Based on the Gaussian mode of the powder distribution in the jet flow, a simplified mode function was proposed to estimate the clad profiles in the edge joint.Cladding experiments were performed for mild steel substrates with thicknesses of 2 and 6 mm under 1 kWCO2 laser irradiation for 304L stainless steel powder. The results show that the concave clad profiles were generated at large incline angles and the powder catchment efficiency might increase with the joint angle and substrate thickness.Based on the analytical results of the cold powder streams impinging on the edge joint, the similarity between the clad profile and the powder concentration in the edge joint is retained only at small incline angles for thin substrates. Due to the heating effects of laser beam spot and the powder re-distribution inside the edge joint, the deviation of the clad profile between the computation and experiment is increased with the incline angle and substrate thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号